Skip to main content

Strategic RNA Silencing for Plant Viral Resistance

  • Chapter
  • First Online:
Somatic Genome Manipulation
  • 1143 Accesses

Abstract

Viral diseases inflict substantial economic losses to major crops by reducing yield and compromising quality. RNA silencing using, e.g. self-complementary hairpin RNA (hpRNA) or artificial microRNA (amiRNA), is an effective method to produce plants that are resistant to specific virus(es). By targeting highly conserved viral sequences or several virus genes simultaneously using chimeric constructs, this method can counter multiple viruses and minimize any loss of viral resistance resulting from viral mutation. Due to public concerns about transgenic plant safety, a non-transgenic RNA silencing approach was used to directly deliver hpRNA into plant tissues to induce plant resistance to viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743

    Article  CAS  PubMed  Google Scholar 

  • Ai T, Zhang L, Gao Z, Zhu CX, Guo X (2011) Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants. Plant Biol 13:304–316

    Article  CAS  PubMed  Google Scholar 

  • Arago FJL, Faria JC (2009) First transgenic geminivirus-resistant plant in the field. Nat Biotechnol 27:1086–1088

    Article  Google Scholar 

  • Asurmendi S, Berg RH, Smith TJ, Bendahmane M, Beachy RN (2007) Aggregation of TMV CP plays a role in CP functions and in coat-protein-mediated resistance. Virology 366:98–106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baulcombe DC (1996) Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8:1833–1844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bendahmane M, Chen I, Asurmendi S, Bazzini AA, Szecsi J, Beachy RN (2007) Coat protein-mediated resistance to TMV infection of Nicotiana tabacum involves multiple modes of interference by coat protein. Virology 366:107–116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bian Z, Xiao A, Cao M, Liu M, Liu S, Jiao Y, Yan W, Qi Z, Zheng Z (2012) Anti-HBV efficacy of combined siRNAs targeting viral gene and heat shock cognate 70. Virol J 9:275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190

    Article  CAS  PubMed  Google Scholar 

  • Bucher E, Lohuis D, van Poppel PMJA, Geerts-Dimitriadou C, Goldbach R, Prins M (2006) Multiple virus resistance at a high frequency using a single transgene construct. J Gen Virol 87:3697–3701

    Article  CAS  PubMed  Google Scholar 

  • Chen YK, Lohuis D, Goldbach R, Prins M (2004) High frequency induction of RNA-mediated resistance against Cucumber mosaic virus using inverted repeat constructs. Mol Breed 14:215–226

    Article  Google Scholar 

  • Chen X, Liu J, Xu L, Jiang F, Xie X, Zhu C, Wen F (2010) Inhibiting virus Infection by RNA Interference of the eight functional genes of the Potato virus Y genome. J Phytopathol 158:776–784

    Article  CAS  Google Scholar 

  • Chi S, Song Y, Zhu C, Zheng C, Liu X, Wen F (2005) Effect of matrix attachment regions on the RNA-mediated resistance induced by PVYN-CP gene. Acta Phytopathol Sin 35:345–351

    Google Scholar 

  • Cogoni C, Romano N, Macino G (1994) Suppression of gene expression by homologous transgenes. Antonie van Leeuwenhoek 65:205–209

    Article  CAS  PubMed  Google Scholar 

  • Dalakouras A, Tzanopoulou M, Tsagris M, Wassenegger M, Kalantidis K (2011) Hairpin transcription does not necessarily lead to efficient triggering of the RNAi pathway. Transgenic Res 20:293–304

    Article  CAS  PubMed  Google Scholar 

  • Dalmay T, Hamilton A, Rudd S, Angell S, Baulcombe DC (2000) An RNA-dependent RNA polymerase gene in arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101:543–553

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Pendón JA, Ding SW (2008) Direct and indirect roles of viral suppressors of RNA silencing in pathogenesis. Annu Rev Phytopathol 46:303–326

    Article  PubMed  Google Scholar 

  • Dietzgen RG, Mitter N (2006) Transgenic gene silencing strategies for virus control. Australas Plant Pathol 35:605–618

    Article  CAS  Google Scholar 

  • Dougherty WG, Lindbo JA, Smith HA, Parks TD, Swaney S, Proebsting WM (1994) RNA-mediated virus resistance in transgenic plants: exploitation of a cellular pathway possibly involved in RNA degradation. Mol Plant-Microbe Interact 7:544–552

    Article  CAS  PubMed  Google Scholar 

  • Duan CG, Wang CH, Fang RX, Guo HS (2008) Artificial microRNAs highly accessible to targets confer efficient virus resistance in plants. J Virol 82:11084–11095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eamens A, Wang MB, Smith NA, Waterhouse PM (2008) RNA silencing in plants: yesterday, today, and tomorrow. Plant Physiol 147:456–468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  CAS  PubMed  Google Scholar 

  • Fagoaga C, López C, De Mendoza AH, Moreno P, Navarro L, Flores R, Peña L (2006) Post-transcriptional gene silencing of the p23 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Plant Mol Biol 60:153–165

    Article  CAS  PubMed  Google Scholar 

  • Fahim M, Millar AA, Wood CC, Larkin PJ (2012) Resistance to Wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat. Plant Biotechnol J 10:150–163

    Article  CAS  PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Fuchs M, Gonsalves D (2008) Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies. Annu Rev Phytopathol 45:173–202

    Article  Google Scholar 

  • Gaba V, Rosner A, Maslenin L, Leibman D, Singer S, Kukurt E, Shiboleth YM, Gal-On A (2010) Hairpin-based virus resistance depends on the sequence similarity between challenge virus and discrete, highly accumulating siRNA species. Eur J Plant Pathol 128:153–164

    Article  CAS  Google Scholar 

  • Gan D, Zhang J, Jiang H, Jiang T, Zhu S, Cheng B (2010) Bacterially expressed dsRNA protects maize against SCMV infection. Plant Cell Rep 29:1261–1268

    Article  CAS  PubMed  Google Scholar 

  • Golemboski DB, Lomonossoff GP, Zaitlin M (1990) Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc Natl Acad Sci U S A 87:6311–6315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952.

    Article  CAS  PubMed  Google Scholar 

  • Harborth J, Elbashir SM, Bechert K, Tuschl T, Weber K (2001) Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci 114:4557–4565

    CAS  PubMed  Google Scholar 

  • Hirai S, Oka SI, Adachi E, Kodama H (2007) The effects of spacer sequences on silencing efficiency of plant RNAi vectors. Plant Cell Rep 26:651–659

    Article  CAS  PubMed  Google Scholar 

  • Holen T, Amarzguioui M, Wiiger MT, Babaie E, Prydz H (2002) Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res 30:1757–1766

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hong Y, Stanley J (1995) Regulation of African cassava mosaic virus complementary-sense gene expression by N-terminal sequences of the replication-associated protein AC1. J Gen Virol 76:2415–2422

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Niu Y, Zhang K, Liu Y, Zhou X (2011) Virus-derived transgenes expressing hairpin RNA give immunity to Tobacco mosaic virus and Cucumber mosaic virus. Virol J 8:41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hull R (2002) Matthews’ plant virology. Academic, San Diego

    Google Scholar 

  • Jiang F, Song Y, Han Q, Zhu C, Wen F (2011a) The choice of target site is crucial in artificial miRNA-mediated virus resistance in transgenic Nicotiana tabacum. Physiol Mol Plant Pathol 76:2–8

    Article  CAS  Google Scholar 

  • Jiang F, Wu B, Zhang C, Song Y, An H, Zhu C, Wen F (2011b) Special origin of stem sequence influence the resistance of hairpin expressing plants against PVY. Biol Plant 55:528–535

    Article  CAS  Google Scholar 

  • Kennerdell JR, Carthew RW (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95:1017–1026

    Article  CAS  PubMed  Google Scholar 

  • Kung YJ, Lin SS, Huang YL, Chen TC, Harish SS, Chua NH, Yeh SD (2012) Multiple artificial microRNAs targeting conserved motifs of the replicase gene confer robust transgenic resistance to negative-sense single-stranded RNA plant virus. Mol Plant Pathol 13:303–317

    Article  CAS  PubMed  Google Scholar 

  • Lafforgue G, Martínez F, Sardanyés J, de la Iglesia F, Niu QW, Lin SS, Solé RV, Chua NH, Daròs JA, Elena SF (2011) Tempo and mode of plant RNA virus escape from RNA interference-mediated resistance. J Virol 85:9686–9695

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lafforgue G, Martínez F, Niu QW, Chua NH, Daròs J, Elena SF (2013) Improving the effectiveness of artificial microRNA (amiR)-mediated resistance against Turnip mosaic virus by combining two amiRs or by targeting highly conserved viral genomic regions. J Virol 87:8254–8256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lapidot M, Gafny R, Ding B, Wolf S, Lucas WJ, Beachy RN (1993) A dysfunctional movement protein of tobacco mosaic virus that partially modifies the plasmodesmata and limits virus spread in transgenic plants. Plant J 4:959–970

    Article  CAS  Google Scholar 

  • Lecoq H, Moury B, Desbiez C, Palloix A, Pitrat M (2004) Durable virus resistance in plants through conventional approaches: a challenge. Virus Res 100:31–39

    Article  CAS  PubMed  Google Scholar 

  • Levin JS, Thompson WF, Csinos AS, Stephenson MG, Weissinger AK (2005) Matrix attachment regions increase the efficiency and stability of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco. Transgenic Res 14:193–206

    Article  CAS  PubMed  Google Scholar 

  • Li P, Song Y, Liu X, Zhu C, Wen F (2007) Study of virus resistance mediate d by inverted repeats derived from 5’ and 3’ ends of coat protein gene of Potato virus Y. Acta Phytopathol Sin 37:69–76.

    Google Scholar 

  • Li Y, Song Y, Zhu C, Wen F (2008) Effect of stem-loop proportion of hpRNA on the RNA-mediated virus resistance. Acta Phytopathol Sin 38:468–477

    Google Scholar 

  • Lin SS, Wu HW, Elena SF, Chen KC, Niu QW, Yeh SD, Chen CC, Chua NH (2009) Molecular evolution of a viral non-coding sequence under the selective pressure of amiRNA-mediated silencing. PLoS Pathog 5(2):e1000312

    Article  PubMed Central  PubMed  Google Scholar 

  • Lindbo JA, Dougherty WG (1992) Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology 189:725–733

    Article  CAS  PubMed  Google Scholar 

  • LÓpez C, Cervera M, Fagoaga C, Moreno P, Navarro L, Flores R, Peña L (2010) Accumulation of transgene-derived siRNAs is not sufficient for RNAi-mediated protection against Citrus tristeza virus in transgenic Mexican lime. Mol Plant Pathol 11:33–41

    Article  PubMed  Google Scholar 

  • Ma J, Song Y, Wu B, Jiang M, Li K, Zhu C, Wen F (2011) Production of transgenic rice new germplasm with strong resistance against two isolations of Rice stripe virus by RNA interference. Transgenic Res 20:1367–1377

    Article  CAS  PubMed  Google Scholar 

  • Malyshenko SI, Kondakova A, Nazarova JV, Kaplan IB, Taliansky ME, Atabekov JG (1993) Reduction of Tobacco mosaic virus accumulation in transgenic plants producing non-functional viral transport proteins. J Gen Virol 74:1149–1156

    Article  CAS  PubMed  Google Scholar 

  • Martínez F, Lafforgue G, Morelli MJ, González-Candelas F, Chua NH, Daròs JA, Elena SF (2012) Ultradeep sequencing analysis of population dynamics of virus escape mutants in RNAi-mediated resistant plants. Mol Biol Evol 29:3297–3307

    Article  PubMed  Google Scholar 

  • Meister G, Landthaler M, Dorsett Y, Tuschl T (2004) Sequence-specific inhibition of microRNA-and siRNA-induced RNA silencing. RNA 10:544–550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ngô H, Tschudi C, Gull K, Ullu E (1998) Double-stranded RNA induces mRNA degradation in trypanosoma brucei. Proc Natl Acad Sci USA 95:14687–14692

    Article  PubMed Central  PubMed  Google Scholar 

  • Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420–1428

    Article  CAS  PubMed  Google Scholar 

  • Nykänen A, Haley B, Zamore PD (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107:309–321

    Article  PubMed  Google Scholar 

  • Pang SZ, Jan FJ, Gonsalves D (1997) Nontarget DNA sequences reduce the transgene length necessary for RNA-mediated tospovirus resistance in transgenic plants. Proc Natl Acad Sci U S A 94:8261–8266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Plasterk RHA (2002) RNA silencing: the genome’s immune system. Science 296:1263–1265

    Article  CAS  PubMed  Google Scholar 

  • Pooggin M, Shivaprasad PV, Veluthambi K, Hohn T (2003) RNAi targeting of DNA virus in plants. Nat Biotechnol 21:131–132

    Article  CAS  PubMed  Google Scholar 

  • Prins M, Laimer M, Noris E, Schubert J, Wassenegger M, Tepfer M (2008) Strategies for antiviral resistance in transgenic plants. Mol Plant Pathol 9:73–83

    CAS  PubMed  Google Scholar 

  • Qu F, Morris TJ (2005) Suppressors of RNA silencing encoded by plant viruses and their role in viral infections. FEBS Lett 579:5958–5964

    Article  CAS  PubMed  Google Scholar 

  • Qu J, Ye J, Fang R (2007) Artificial microRNA-mediated virus resistance in plants. J Virol 81:6690–6699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sanford JC, Johnston SA (1985) The concept of parasite-derived resistance: deriving resistance genes from the parasite’s own genome. J Theor Biol 113:395–405

    Article  Google Scholar 

  • Shi Y, Gu M, Fan Z, Hong Y (2008) RNA silencing suppressors: how viruses fight back. Future Virol 3:125–133

    Article  CAS  Google Scholar 

  • Shimizu T, Nakazono-Nagaoka E, Uehara-Ichiki T, Sasaya T, Omura T (2011) Targeting specific genes for RNA interference is crucial to the development of strong resistance to rice stripe virus. Plant Biotechnol J 9:503–512

    Article  CAS  PubMed  Google Scholar 

  • Simón-Mateo C, García JA (2006) MicroRNA-guided processing impairs Plum pox virus replication, but the virus readily evolves to escape this silencing mechanism. J Virol 80:2429–2436

    Article  PubMed Central  PubMed  Google Scholar 

  • Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Total silencing by intronspliced hairpin RNAs. Nature 407:319–32.

    Article  CAS  PubMed  Google Scholar 

  • Soler N, Plomer M, Fagoaga C, Moreno P, Navarro L, Flores R, Peña L (2012) Transformation of Mexican lime with an intron-hairpin construct expressing untranslatable versions of the genes coding for the three silencing suppressors of Citrus tristeza virus confers complete resistance to the virus. Plant Biotechnol J 10:597–608

    Article  CAS  PubMed  Google Scholar 

  • Song E, Lee SK, Dykxhoorn DM, Novina C, Zhang D, Crawford K, Cerny J, Sharp PA, Lieberman J, Manjunath N, Shankar P (2003) Sustained small interfering RNA-mediated human immunodeficiency virus type 1 inhibition in primary macrophages. J Virol 77:7174–7181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song L, Gao S, Jiang W, Chen S, Liu Y, Zhou L, Huang W (2011) Silencing suppressors: viral weapons for countering host cell defenses. Protein Cell 2:273–281

    Article  CAS  PubMed  Google Scholar 

  • Sós-Hegedus A, Lovas Á, Kondrák M, Kovács G, Bánfalvi Z (2005) Active RNA silencing at low temperature indicates distinct pathways for antisense-mediated gene-silencing in potato. Plant Mol Biol 59:595–602

    Article  PubMed  Google Scholar 

  • Stam M, Mol JNM, Kooter JM (1997) The silence of genes in transgenic plants. Ann Bot 79:3–12

    Article  CAS  Google Scholar 

  • Sun ZN, Song YZ, Yin GH, Zhu CX, Wen FJ (2010a) Hprnas derived from different regions of the nib gene have different abilities to protect tobacco from infection with potato virus Y. J Phytopathol 158:566–568

    Article  CAS  Google Scholar 

  • Sun ZN, Yin GH, Song YZ, An HL, Zhu CX, Wen FJ (2010b) Bacterially expressed double-stranded RNAs against hot-spot sequences of tobacco mosaic virus or Potato virus Y genome have different ability to protect tobacco from viral infection. Appl Biochem Biotechnol 162:1901–1914

    Article  CAS  PubMed  Google Scholar 

  • Szittya G, Silhavy D, Molnár A, Havelda Z, Lovas Á, Lakatos L, Bánfalvi Z, Burgyán J (2003) Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO J 22:633–640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tenllado F, Díaz-Ruíz JR (2001) Double-stranded RNA-mediated interference with plant virus infection. J Virol 75:12288–12297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tenllado F, Martínez-García B, Vargas M, Díaz-Ruíz JR (2003) Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections. BMC Biotechnol 3:3. doi:10.1186/1472-6750-3-3

    Article  PubMed Central  PubMed  Google Scholar 

  • Tepfer M (2002) Risk assessment of virus-resistant transgenic plants. Annu Rev Phytopathol 40:467–491

    Article  CAS  PubMed  Google Scholar 

  • Timmons L, Court DL, Fire A (2001) Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263:103–112

    Article  CAS  PubMed  Google Scholar 

  • Van Blokland R Van der Geest N Mol JNM Kooter JM (1994) Transgene-mediated suppression of chalcone synthase expression in petunia hybrida results from an increase in RNA turnover. Plant J 6:861–877

    Article  CAS  Google Scholar 

  • Van Der Krol AR Mur LA Beld M Mol JNM Stuitje AR (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2:291–299

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang MB, Masuta C, Smith NA, Shimura H (2012) RNA silencing and plant viral diseases. Mol Plant-Microbe Interact 25:1275–1285

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse PM, Graham MW, Wang MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci U S A 95:13959–13964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Waterhouse PM, Smith NA, Wang MB (1999) Virus resistance and gene silencing: killing the messenger. Trends Plant Sci 4:452–457

    Article  PubMed  Google Scholar 

  • Xu L, Song Y, Zhu J, Guo X, Zhu C, Wen F (2009) Conserved sequences of replicase gene-mediated resistance to potyvirus through RNA silencing. J Plant Biol 52:550–559

    Article  CAS  Google Scholar 

  • Yin G, Sun Z, Liu N, Zhang L, Song Y, Zhu C, Wen F (2009) Production of double-stranded RNA for interference with TMV infection utilizing a bacterial prokaryotic expression system. Appl Microbiol Biotechnol 84:323–333

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Li H, Zhang J, Zhang C, Gong P, Ziaf K, Xiao F, Ye Z (2011a) Expression of artificial microRNAs in tomato confers efficient and stable virus resistance in a cell-autonomous manner. Transgenic Res 20:569–581

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Chen H, Huang X, Xia R, Zhao Q, Lai J, Teng K, Li Y, Liang L, Du Q, Zhou X, Guo H, Xie Q (2011b) BSCTV C2 attenuates the degradation of SAMDC1 to suppress DNA methylation-mediated gene silencing in Arabidopsis. Plant Cell 23:273–288

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang L, Xie X, Song Y, Jiang F, Zhu C, Wen F (2013) Viral resistance mediated by shRNA depends on the sequence similarity and mismatched sites between the target sequence and siRNA. Biol Plant 1–8

    Google Scholar 

  • Zhu J, Zhu X, Wen F, Bai Q, Zhu C, Song Y (2004) Effect of cDNA fragments in different length derived from potato virus Y coat protein gene on the induction of RNA-mediated virus resistance. Sci China Series C: Life Sci 47:382–388

    Article  CAS  Google Scholar 

  • Zhu X, Zhu C, Song Y, Wen F, Liu H, Li X (2006) Resistance to potato virus Y mediated by the 3′ end segments of coat protein gene in the transgenic tobacco plants. Sci Agri Sin 39:1153–1158

    CAS  Google Scholar 

  • Zhu CX, Song YZ, Yin GH, Wen FJ (2009) Induction of RNA-mediated multiple virus resistance to Potato virus Y, Tobacco mosaic virus and Cucumber mosaic virus. J Phytopathol 157:101–107

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changxiang Zhu or Xiu-Qing Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ma, J., Zhu, C., Wen, F., Xu, H., Li, XQ. (2015). Strategic RNA Silencing for Plant Viral Resistance. In: Li, XQ., Donnelly, D., Jensen, T. (eds) Somatic Genome Manipulation. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2389-2_11

Download citation

Publish with us

Policies and ethics