Skip to main content

Olfactory Receptor Screening Assay Using Nanovesicle-Immobilized Carbon Nanotube Transistor

  • Protocol
  • First Online:
G Protein-Coupled Receptor Screening Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1272))

Abstract

Olfactory receptor (OR) genes are considered to be the largest superfamily of the mammalian genome, and in the case of humans, approximately 390 kinds of functional ORs play a role in perceiving odors. In spite of their significance in olfaction, the function of all ORs has not yet been fully revealed. In order to efficiently identify specific ligands of orphan ORs, methods that can generate olfactory signals in a reliable manner and that can convert the cellular signals into measurable responses are required. Here, we describe an OR screening assay method using olfactory sensors that are based on cell-derived nanovesicles combined with single-walled carbon nanotube field-effect transistors (SWNT-FETs). The nanovesicles contain ORs on their surface membrane and induce influx of calcium ions similar to olfactory signal transduction. This ion influx causes an electrical current change along the carbon nanotube, and then this change is measured by the SWNT-FET sensor. This technique facilitates the simple and rapid screening of OR functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vassilatis DK, Hohmann JG, Zeng H et al (2003) The G protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci U S A 100:4903–4908

    Article  CAS  Google Scholar 

  2. Zhang X, Firestein S (2002) The olfactory receptor gene superfamily of the mouse. Nat Neurosci 5:124–133

    Article  CAS  Google Scholar 

  3. Malnic B, Godfrey PA, Buck LB (2004) The human olfactory receptor gene family. Proc Natl Acad Sci U S A 101:2584–2589

    Article  CAS  Google Scholar 

  4. Buck LB, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    Article  CAS  Google Scholar 

  5. Firestein S (2001) How the olfactory system makes sense of scents. Nature 413:211–218

    Article  CAS  Google Scholar 

  6. Chess A, Simon I, Cedar H et al (1994) Allelic inactivation regulates olfactory receptor gene expression. Cell 78:823–834

    Article  CAS  Google Scholar 

  7. Malnic B, Hirono J, Sato T et al (1999) Combinatorial receptor codes for odors. Cell 96:713–723

    Article  CAS  Google Scholar 

  8. Oh EH, Song HS, Park TH (2011) Recent advances in electronic and bioelectronic noses and their biomedical applications. Enzyme Microb Technol 48:427–437

    Article  CAS  Google Scholar 

  9. Touhara K, Sengoku S, Inaki K et al (1999) Functional identification and reconstitution of an odorant receptor in single olfactory neurons. Proc Natl Acad Sci U S A 96:4040–4045

    Article  CAS  Google Scholar 

  10. Lee SH, Park TH (2010) Recent advances in the development of bioelectronic nose. Biotechnol Bioproc Eng 15:22–29

    Article  CAS  Google Scholar 

  11. Lee JY, Ko HJ, Lee SH et al (2006) Cell-based measurement of odorant molecules using surface plasmon resonance. Enzyme Microb Technol 39:375–380

    Article  CAS  Google Scholar 

  12. Lee SH, Jun SB, Ko HJ et al (2009) Cell-based olfactory biosensor using microfabricated planar electrode. Biosens Bioelectron 24:2659–2664

    Article  CAS  Google Scholar 

  13. Ko HJ, Park TH (2006) Dual signal transduction mediated by a single type of olfactory receptor expressed in a heterologous system. Biol Chem 387:59–68

    Article  CAS  Google Scholar 

  14. Lee SH, Ko HJ, Park TH (2009) Real-time monitoring of odorant-induced cellular reactions using surface plasmon resonance. Biosens Bioelectron 25:55–60

    Article  CAS  Google Scholar 

  15. Krautwurst D, Yau K-W, Reed RR (1998) Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell 95:917–926

    Article  CAS  Google Scholar 

  16. Zhao H, Ivic L, Otaki JM et al (1998) Functional expression of a mammalian odorant receptor. Science 279:237–242

    Article  CAS  Google Scholar 

  17. Katada S, Nakagawa T, Kataoka H et al (2003) Odorant response assays for a heterologously expressed olfactory receptor. Biochem Biophys Res Commun 305:964–969

    Article  CAS  Google Scholar 

  18. Spehr M, Gisselmann G, Poplawski A et al (2003) Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299:2054–2058

    Article  CAS  Google Scholar 

  19. Wetzel CH, Oles M, Wellerdieck C et al (1999) Specificity and sensitivity of a human olfactory receptor functionally expressed in human embryonic kidney 293 cells and Xenopus Laevis oocytes. J Neurosci 19:7426–7433

    Article  CAS  Google Scholar 

  20. Jin HJ, Lee SH, Kim TH et al (2012) Nanovesicle-based bioelectronic nose platform mimicking human olfactory signal transduction. Biosens Bioelectron 35:335–341

    Article  CAS  Google Scholar 

  21. Park J, Lim JH, Jin HJ et al (2012) A bioelectronic sensor based on canine olfactory nanovesicle-carbon nanotube hybrid structures for the fast assessment of food quality. Analyst 137:3249–3254

    Article  CAS  Google Scholar 

  22. Pick H, Schmid EL, Tairi A-P et al (2005) Investigating cellular signaling reactions in single attoliter vesicles. J Am Chem Soc 127:2908–2912

    Article  CAS  Google Scholar 

  23. Lim JH, Park J, Oh EH et al (2014) Nanovesicle-based bioelectronic nose for the diagnosis of lung cancer from human blood. Adv Healthc Mater 3:360–366

    Article  CAS  Google Scholar 

  24. Hatt H, Gisselmann G, Wetzel CH (1999) Cloning, functional expression and characterization of a human olfactory receptor. Cell Mol Biol 45:285–291

    CAS  PubMed  Google Scholar 

  25. Nozawa M, Nei M (2007) Evolutionary dynamics of olfactory receptor genes in Drosophila species. Proc Natl Acad Sci U S A 104:7122–7127

    Article  CAS  Google Scholar 

  26. Lee M, Im J, Lee BY et al (2006) Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires. Nat Nanotechnol 1:66–71

    Article  CAS  Google Scholar 

  27. Rao SG, Huang L, Setyawan W et al (2003) Nanotube electronics: large-scale assembly of carbon nanotubes. Nature 425:36–37

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT and Future Planning (No. 2013055375 and 2014R1A2A1A10053108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai Hyun Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lim, J.H., Park, J., Hong, S., Park, T.H. (2015). Olfactory Receptor Screening Assay Using Nanovesicle-Immobilized Carbon Nanotube Transistor. In: Prazeres, D.M.F., Martins, S.A.M. (eds) G Protein-Coupled Receptor Screening Assays. Methods in Molecular Biology, vol 1272. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-2336-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2336-6_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-2335-9

  • Online ISBN: 978-1-4939-2336-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics