Skip to main content

Gene–Diet Interactions on Bone

  • Chapter
  • First Online:
Nutrition and Bone Health

Part of the book series: Nutrition and Health ((NH))

Abstract

Osteoporosis is a complex disease, with both environmental and genetic components. Moreover, there are clear suggestions that nutritional and genetic factors interact to influence bone modeling and mineral homeostasis during the years of peak bone mass acquisition, as well as influence bone remodeling and the maintenance of bone mass. Here we review the bases for candidate gene and genome-wide association studies with bone mineral density and fractures, as well as the candidate gene studies that investigated gene–dietary interactions in osteoporosis. These include the VDR, ESR1, and Il-6 gene with vitamin D and/or calcium intake, and Ppar and lipids intake. Notably, few genome-wide association studies (GWAS) to date have incorporated G*E interactions into the analysis design and this is primarily due to the challenges associated with such an approach. Also, more refined phenotypes than areal bone mineral density (aBMD) are required, with a focus on cellular and molecular processes in bones in response to nutrition. If successful, such genome-wide interaction studies (GWIS) can contribute to better bone health by proposing individualized Recommended Dietary Allowances (RDA) for various nutrients.

Positive health requires a knowledge of man’s primary constitution and of the powers of various foods, both those natural to them and those resulting from human skill.

Hippocrates, 480 BC

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Heritability (h 2, %) is defined as the proportion of the total variance for a trait across the population that is attributable to the additive effects of genes.

  2. 2.

    Genome-wide methylation arrays are now available (see reference [120]).

References

  1. Kelly PJ, Morrison NA, Sambrook PN, Nguyen TV, Eisman JA. Genetic influences on bone turnover, bone density and fracture. Eur J Endocrinol. 1995;133(3):265–71.

    CAS  PubMed  Google Scholar 

  2. Eisman JA. Genetics of osteoporosis. Endocr Rev. 1999;20(6):788–804.

    CAS  PubMed  Google Scholar 

  3. Ferrari S, Rizzoli R, Slosman D, Bonjour JP. Familial resemblance for bone mineral mass is expressed before puberty. J Clin Endocrinol Metab. 1998;83(2):358–61.

    CAS  PubMed  Google Scholar 

  4. Bonjour JP, et al. Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial. J Clin Invest. 1997;99(6):1287–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Chevalley T, Bonjour JP, Ferrari S, Hans D, Rizzoli R. Skeletal sites selectivity of calcium supplementation on gain in areal bone mineral density. A randomized, double-blind, placebo-controlled trial in pre-pubertal boys. J Clin Endocrinol Metab. 2005;90:3342–9.

    CAS  PubMed  Google Scholar 

  6. Chevalley T, et al. Protein intake modulates the effect of calcium supplementation on bone mass gain in prepubertal boys. J Bone Miner Res. 2002;17 suppl 1:S172.

    Google Scholar 

  7. Weaver CM. The growing years and prevention of osteoporosis in later life. Proc Nutr Soc. 2000;59(2):303–6.

    CAS  PubMed  Google Scholar 

  8. Rizzoli R, Bianchi ML, Garabedian M, McKay HA, Moreno LA. Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone. 2010;46(2):294–305.

    PubMed  Google Scholar 

  9. Chevalley T, Bonjour JP, Ferrari S, Rizzoli R. High-protein intake enhances the positive impact of physical activity on BMC in prepubertal boys. J Bone Miner Res. 2008;23(1):131–42.

    CAS  PubMed  Google Scholar 

  10. Ferrari S, Rizzoli R, Bonjour JP. Heritable and nutritional influences on bone mineral mass. Aging (Milano). 1998;10(3):205–13.

    CAS  Google Scholar 

  11. Bonjour JP, Chevalley T, Rizzoli R, Ferrari S. Gene-environment interactions in the skeletal response to nutrition and exercise during growth. Med Sport Sci. 2007;51:64–80.

    PubMed  Google Scholar 

  12. Eisman JA. Genetics, calcium intake and osteoporosis. Proc Nutr Soc. 1998;57(2):187–93.

    CAS  PubMed  Google Scholar 

  13. Ferrari SL, Rizzoli R. Gene variants for osteoporosis and their pleiotropic effects in aging. Mol Aspects Med. 2005;26(3):145–67.

    CAS  PubMed  Google Scholar 

  14. Ackert-Bicknell CL, Karasik D. Impact of the environment on the skeleton: is it modulated by genetic factors? Curr Osteoporos Rep. 2013;11(3):219–28.

    PubMed Central  PubMed  Google Scholar 

  15. Rogers J, Mahaney MC, Beamer WG, Donahue LR, Rosen CJ. Beyond one gene-one disease: alternative strategies for deciphering genetic determinants of osteoporosis [editorial]. Calcif Tissue Int. 1997;60(3):225–8.

    CAS  PubMed  Google Scholar 

  16. Nguyen TV, Blangero J, Eisman JA. Genetic epidemiological approaches to the search for osteoporosis genes. J Bone Miner Res. 2000;15(3):392–401.

    CAS  PubMed  Google Scholar 

  17. Cardon LR, et al. Evidence for a major gene for bone mineral density in idiopathic osteoporotic families. J Bone Miner Res. 2000;15(6):1132–7.

    CAS  PubMed  Google Scholar 

  18. Deng HW, et al. Evidence for a major gene for bone mineral density/content in human pedigrees identified via probands with extreme bone mineral density. Ann Hum Genet. 2002;66(Pt 1):61–74.

    CAS  PubMed  Google Scholar 

  19. Livshits G, Karasik D, Pavlovsky O, Kobyliansky E. Segregation analysis reveals a major gene effect in compact and cancellous bone mineral density in 2 populations. Hum Biol. 1999;71(2):155–72.

    CAS  PubMed  Google Scholar 

  20. Livshits G, Yakovenko C, Kobyliansky E. Quantitative genetic analysis of circulating levels of biochemical markers of bone formation. Am J Med Genet. 2000;94(4):324–31.

    CAS  PubMed  Google Scholar 

  21. Rizzoli R, Bonjour JP, Ferrari SL. Osteoporosis, genetics and hormones. J Mol Endocrinol. 2001;26(2):79–94.

    CAS  PubMed  Google Scholar 

  22. Morrison NA, et al. Prediction of bone density from vitamin D receptor alleles [see comments] [published erratum appears in Nature 1997 May 1;387(6628):106]. Nature. 1994;367(6460):284–7.

    CAS  PubMed  Google Scholar 

  23. van Meurs JB, et al. Association of 5' estrogen receptor alpha gene polymorphisms with bone mineral density, vertebral bone area and fracture risk. Hum Mol Genet. 2003;12(14):1745–54.

    PubMed  Google Scholar 

  24. Mann V, et al. A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J Clin Invest. 2001;107(7):899–907.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. McGuigan FE, Reid DM, Ralston SH. Susceptibility to osteoporotic fracture is determined by allelic variation at the Sp1 site, rather than other polymorphic sites at the COL1A1 locus. Osteoporos Int. 2000;11(4):338–43.

    CAS  PubMed  Google Scholar 

  26. Langdahl BL, Uitterlinden AG, Ralston SH. Large-scale analysis of association between polymorphisms in the Transforming Growth Factor Beta 1 gene (TGFB1) and osteoporosis: the GENOMOS Study. Bone. 2008;42(5):969–81.

    CAS  PubMed  Google Scholar 

  27. Johnson ML, et al. Linkage of a gene causing high bone mass to human chromosome 11 (11q12-13) [see comments]. Am J Hum Genet. 1997;60(6):1326–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Gong Y, et al. Osteoporosis-pseudoglioma syndrome, a disorder affecting skeletal strength and vision, is assigned to chromosome region 11q12-13. Am J Hum Genet. 1996;59(1):146–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Van Hul E, et al. Localization of the gene causing autosomal dominant osteopetrosis type I to chromosome 11q12-13. J Bone Miner Res. 2002;17(6):1111–7.

    PubMed  Google Scholar 

  30. Gong Y, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107(4):513–23.

    CAS  PubMed  Google Scholar 

  31. Little RD, et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet. 2002;70(1):11–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Boyden LM, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 2002;346(20):1513–21.

    CAS  PubMed  Google Scholar 

  33. Koller DL, et al. Linkage of a QTL contributing to normal variation in bone mineral density to chromosome 11q12-13. J Bone Miner Res. 1998;13(12):1903–8.

    CAS  PubMed  Google Scholar 

  34. Livshits G, Trofimov S, Malkin I, Kobyliansky E. Transmission disequilibrium test for hand bone mineral density and 11q12-13 chromosomal segment. Osteoporos Int. 2002;13(6):461–7.

    CAS  PubMed  Google Scholar 

  35. Kiel DP, et al. Genetic variation at the low-density lipoprotein receptor-related protein 5 (LRP5) locus modulates Wnt signaling and the relationship of physical activity with bone mineral density in men. Bone. 2007;40(3):587–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Ferrari SL, Deutsch S, Antonarakis SE. Pathogenic mutations and polymorphisms in the lipoprotein receptor-related protein 5 reveal a new biological pathway for the control of bone mass. Curr Opin Lipidol. 2005;16(2):207–14.

    CAS  PubMed  Google Scholar 

  37. Ferrari SL, et al. Polymorphisms in the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with variation in vertebral bone mass, vertebral bone size, and stature in whites. Am J Hum Genet. 2004;74(5):866–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Ioannidis JP, et al. Association of polymorphisms of the estrogen receptor alpha gene with bone mineral density and fracture risk in women: a meta-analysis. J Bone Miner Res. 2002;17(11):2048–60.

    CAS  PubMed  Google Scholar 

  39. van Meurs JB, Trikalinos T, Ralston SH, Study G. Large-scale analysis of association between polymorphisms in the LRP-5 and -6 genes and osteoporosis: the GENOMOS Study. JAMA. 2008;299(11):1277–90.

    PubMed Central  PubMed  Google Scholar 

  40. Richards JB, et al. Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann Intern Med. 2009;151(8):528–37.

    PubMed Central  PubMed  Google Scholar 

  41. Barr R, et al. Association between vitamin D receptor gene polymorphisms, falls, balance and muscle power: results from two independent studies (APOSS and OPUS). Osteoporos Int. 2010;21(3):457–66.

    CAS  PubMed  Google Scholar 

  42. Consortium WTCC. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.

    Google Scholar 

  43. Estrada K, et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet. 2012;44(5):491–501.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Paternoster L, et al. Genome-wide association meta-analysis of cortical bone mineral density unravels allelic heterogeneity at the RANKL locus and potential pleiotropic effects on bone. PLoS Genet. 2010;6(11):e1001217.

    PubMed Central  PubMed  Google Scholar 

  45. Zheng H-F, et al. WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. PLoS Genet. 2012;8(7):e1002745.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Medina-Gomez C, et al. Meta-analysis of genome-wide scans for total body BMD in children and adults reveals allelic heterogeneity and age-specific effects at the WNT16 locus. PLoS Genet. 2012;8(7):e1002718.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Koller DL, et al. Meta-analysis of genome-wide studies identifies WNT16 and ESR1 SNPs associated with bone mineral density in premenopausal women. J Bone Miner Res. 2013;28(3):547–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Duncan EL, et al. Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk. PLoS Genet. 2011;7(4):e1001372.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Farber CR, et al. An integrative genetics approach to identify candidate genes regulating BMD: combining linkage, gene expression, and association. J Bone Miner Res. 2009;24(1):105–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Hsu YH, et al. An integration of genome-wide association study and gene expression profiling to prioritize the discovery of novel susceptibility Loci for osteoporosis-related traits. PLoS Genet. 2010;6(6):e1000977.

    PubMed Central  PubMed  Google Scholar 

  51. Richards JB, et al. Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet. 2008;371(9623):1505–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Liu CT, et al. Assessment of gene-by-sex interaction effect on bone mineral density. J Bone Miner Res. 2012;27(10):2051–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Hamza TH, et al. Genome-wide gene-environment study identifies glutamate receptor gene GRIN2A as a Parkinson’s disease modifier gene via interaction with coffee. PLoS Genet. 2011;7(8):e1002237.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Velez Edwards DR, et al. Gene-environment interactions and obesity traits among postmenopausal African-American and Hispanic women in the Women’s Health Initiative SHARe Study. Hum Genet. 2013;132(3):323–36.

    PubMed Central  PubMed  Google Scholar 

  55. Morrison NA, Yeoman R, Kelly PJ, Eisman JA. Contribution of trans-acting factor alleles to normal physiological variability: vitamin D receptor gene polymorphism and circulating osteocalcin. Proc Natl Acad Sci U S A. 1992;89(15):6665–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Ferrari S, Bonjour J, Rizzoli R. The vitamin D receptor gene and calcium metabolism. Trends Endocrinol Metab (TEM). 1998;9:259–64.

    CAS  Google Scholar 

  57. Dawson-Hughes B, Harris SS, Finneran S. Calcium absorption on high and low calcium intakes in relation to vitamin D receptor genotype. J Clin Endocrinol Metab. 1995;80(12):3657–61.

    CAS  PubMed  Google Scholar 

  58. Wishart JM, et al. Relations between calcium intake, calcitriol, polymorphisms of the vitamin D receptor gene, and calcium absorption in premenopausal women. Am J Clin Nutr. 1997;65(3):798–802.

    CAS  PubMed  Google Scholar 

  59. Gennari L, De Paola V, Merlotti D, Martini G, Nuti R. Steroid hormone receptor gene polymorphisms and osteoporosis: a pharmacogenomic review. Expert Opin Pharmacother. 2007;8(5):537–53.

    CAS  PubMed  Google Scholar 

  60. Ferrari S, Manen D, Bonjour JP, Slosman D, Rizzoli R. Bone mineral mass and calcium and phosphate metabolism in young men: relationships with vitamin D receptor allelic polymorphisms. J Clin Endocrinol Metab. 1999;84(6):2043–8.

    CAS  PubMed  Google Scholar 

  61. Carling T, et al. Vitamin D receptor genotypes in primary hyperparathyroidism. Nat Med. 1995;1(12):1309–11.

    CAS  PubMed  Google Scholar 

  62. Giannini S, et al. The effects of vitamin D receptor polymorphism on secondary hyperparathyroidism and bone density after renal transplantation. J Bone Miner Res. 2002;17(10):1768–73.

    CAS  PubMed  Google Scholar 

  63. Marco MP, et al. Vitamin D receptor genotype influences parathyroid hormone and calcitriol levels in predialysis patients. Kidney Int. 1999;56(4):1349–53.

    CAS  PubMed  Google Scholar 

  64. Rubello D, et al. Secondary hyperparathyroidism is associated with vitamin D receptor polymorphism and bone density after renal transplantation. Biomed Pharmacother. 2005;59(7):402–7.

    CAS  PubMed  Google Scholar 

  65. Santoro D, et al. Vitamin D metabolism and activity as well as genetic variants of the vitamin D receptor (VDR) in chronic kidney disease patients. J Nephrol. 2013;26(4):636–44.

    CAS  PubMed  Google Scholar 

  66. Fischer PR, et al. Vitamin D receptor polymorphisms and nutritional rickets in Nigerian children. J Bone Miner Res. 2000;15(11):2206–10.

    CAS  PubMed  Google Scholar 

  67. Baroncelli GI, et al. Rickets in the Middle East: role of environment and genetic predisposition. J Clin Endocrinol Metab. 2008;93(5):1743–50.

    CAS  PubMed  Google Scholar 

  68. Ames SK, Ellis KJ, Gunn SK, Copeland KC, Abrams SA. Vitamin D receptor gene Fok1 polymorphism predicts calcium absorption and bone mineral density in children. J Bone Miner Res. 1999;14(5):740–6.

    CAS  PubMed  Google Scholar 

  69. Ferrari SL, Rizzoli R, Slosman DO, Bonjour JP. Do dietary calcium and age explain the controversy surrounding the relationship between bone mineral density and vitamin D receptor gene polymorphisms? J Bone Miner Res. 1998;13(3):363–70.

    CAS  PubMed  Google Scholar 

  70. Salamone LM, et al. Determinants of premenopausal bone mineral density: the interplay of genetic and lifestyle factors. J Bone Miner Res. 1996;11(10):1557–65.

    CAS  PubMed  Google Scholar 

  71. Esterle L, Jehan F, Sabatier JP, Garabedian M. Higher milk requirements for bone mineral accrual in adolescent girls bearing specific caucasian genotypes in the VDR promoter. J Bone Miner Res. 2009;24(8):1389–97.

    CAS  PubMed  Google Scholar 

  72. Ferrari S, et al. Vitamin-D-receptor-gene polymorphisms and change in lumbar-spine bone mineral density [see comments]. Lancet. 1995;345(8947):423–4.

    CAS  PubMed  Google Scholar 

  73. Krall EA, Parry P, Lichter JB, Dawson-Hughes B. Vitamin D receptor alleles and rates of bone loss: influences of years since menopause and calcium intake. J Bone Miner Res. 1995;10(6):978–84.

    CAS  PubMed  Google Scholar 

  74. Salamone LM, et al. The association between vitamin D receptor gene polymorphisms and bone mineral density at the spine, hip and whole-body in premenopausal women [published erratum appears in Osteoporos Int 1996;6(3):187-8]. Osteoporos Int. 1996;6(1):63–8.

    CAS  PubMed  Google Scholar 

  75. Kiel DP, et al. The BsmI vitamin D receptor restriction fragment length polymorphism (bb) influences the effect of calcium intake on bone mineral density. J Bone Miner Res. 1997;12(7):1049–57.

    CAS  PubMed  Google Scholar 

  76. Brown MA, et al. Genetic control of bone density and turnover: role of the collagen 1alpha1, estrogen receptor, and vitamin D receptor genes. J Bone Miner Res. 2001;16(4):758–64.

    CAS  PubMed  Google Scholar 

  77. Stathopoulou MG, et al. The role of vitamin D receptor gene polymorphisms in the bone mineral density of Greek postmenopausal women with low calcium intake. J Nutr Biochem. 2011;22(8):752–7.

    CAS  PubMed  Google Scholar 

  78. Feskanich D, et al. Vitamin D receptor genotype and the risk of bone fractures in women. Epidemiology. 1998;9(5):535–9.

    CAS  PubMed  Google Scholar 

  79. Graafmans WC, et al. The effect of vitamin D supplementation on the bone mineral density of the femoral neck is associated with vitamin D receptor genotype. J Bone Miner Res. 1997;12(8):1241–5.

    CAS  PubMed  Google Scholar 

  80. Michaelsson K, et al. The positive effect of dietary vitamin D intake on bone mineral density in men is modulated by the polyadenosine repeat polymorphism of the vitamin D receptor. Bone. 2006;39(6):1343–51.

    CAS  PubMed  Google Scholar 

  81. Molgaard C, et al. Does vitamin D supplementation of healthy Danish Caucasian girls affect bone turnover and bone mineralization? Bone. 2010;46(2):432–9.

    CAS  PubMed  Google Scholar 

  82. Arabi A, et al. Vitamin D receptor gene polymorphisms modulate the skeletal response to vitamin D supplementation in healthy girls. Bone. 2009;45(6):1091–7.

    CAS  PubMed  Google Scholar 

  83. Morrison NA, et al. Vitamin D receptor genotypes influence the success of calcitriol therapy for recurrent vertebral fracture in osteoporosis. Pharmacogenet Genomics. 2005;15(2):127–35.

    CAS  PubMed  Google Scholar 

  84. Matsuyama T, et al. Vitamin D receptor genotypes and bone mineral density. Lancet. 1995;345(8959):1238–9.

    CAS  PubMed  Google Scholar 

  85. Yamagata Z, et al. Vitamin D receptor gene polymorphism and bone mineral density in healthy Japanese women. Lancet. 1994;344(8928):1027.

    CAS  PubMed  Google Scholar 

  86. Ensrud KE, et al. Vitamin D receptor gene polymorphisms and the risk of fractures in older women. For the Study of Osteoporotic Fractures Research Group. J Bone Miner Res. 1999;14(10):1637–45.

    CAS  PubMed  Google Scholar 

  87. Vandevyver C, et al. Lack of association between estrogen receptor genotypes and bone mineral density, fracture history, or muscle strength in elderly women. J Bone Miner Res. 1999;14(9):1576–82.

    CAS  PubMed  Google Scholar 

  88. Kurabayashi T, et al. Effect of vitamin D receptor and estrogen receptor gene polymorphism on the relationship between dietary calcium and bone mineral density in Japanese women. J Bone Miner Metab. 2004;22(2):139–47.

    CAS  PubMed  Google Scholar 

  89. Salmen T, et al. Early postmenopausal bone loss is associated with PvuII estrogen receptor gene polymorphism in Finnish women: effect of hormone replacement therapy. J Bone Miner Res. 2000;15(2):315–21.

    CAS  PubMed  Google Scholar 

  90. Yang LC, et al. Association of estrogen receptor-alpha gene Pvull polymorphisms with the effect of calcium supplementation on skeletal development in Chinese pubertal girls. Biomed Environ Sci. 2009;22(6):480–7.

    PubMed  Google Scholar 

  91. Dawson-Hughes B, Harris SS, Krall EA, Dallal GE. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med. 1997;337(10):670–6.

    CAS  PubMed  Google Scholar 

  92. Manolagas SC. The role of IL-6 type cytokines and their receptors in bone. Ann N Y Acad Sci. 1998;840:194–204.

    CAS  PubMed  Google Scholar 

  93. Fishman D, et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest. 1998;102(7):1369–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Ferrari SL, Ahn-Luong L, Garnero P, Humphries SE, Greenspan SL. Two promoter polymorphisms regulating interleukin-6 gene expression are associated with circulating levels of C-reactive protein and markers of bone resorption in postmenopausal women. J Clin Endocrinol Metab. 2003;88(1):255–9.

    CAS  PubMed  Google Scholar 

  95. Ferrari SL, et al. A functional polymorphic variant in the interleukin-6 gene promoter associated with low bone resorption in postmenopausal women. Arthritis Rheum. 2001;44(1):196–201.

    CAS  PubMed  Google Scholar 

  96. Moffett SP, et al. Association of the G-174C variant in the interleukin-6 promoter region with bone loss and fracture risk in older women. J Bone Miner Res. 2004;19(10):1612–8.

    CAS  PubMed  Google Scholar 

  97. Lorentzon M, Lorentzon R, Nordstrom P. Interleukin-6 gene polymorphism is related to bone mineral density during and after puberty in healthy white males: a cross-sectional and longitudinal study. J Bone Miner Res. 2000;15(10):1944–9.

    CAS  PubMed  Google Scholar 

  98. Garnero P, et al. Association between a functional interleukin-6 gene polymorphism and peak bone mineral density and postmenopausal bone loss in women: the OFELY study. Bone. 2002;31(1):43–50.

    CAS  PubMed  Google Scholar 

  99. Ferrari SL, et al. Interactions of interleukin-6 promoter polymorphisms with dietary and lifestyle factors and their association with bone mass in men and women from the framingham osteoporosis study. J Bone Miner Res. 2004;19(4):552–9.

    CAS  PubMed  Google Scholar 

  100. McLean RR, et al. Homocysteine as a predictive factor for hip fracture in older persons. N Engl J Med. 2004;350(20):2042–9.

    CAS  PubMed  Google Scholar 

  101. van Meurs JB, et al. Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med. 2004;350(20):2033–41.

    PubMed  Google Scholar 

  102. McLean RR, Hannan MT. B vitamins, homocysteine, and bone disease: epidemiology and pathophysiology. Curr Osteoporos Rep. 2007;5(3):112–9.

    PubMed  Google Scholar 

  103. Wang H, Liu C. Association of MTHFR C667T polymorphism with bone mineral density and fracture risk: an updated meta-analysis. Osteoporos Int. 2012;23(11):2625–34.

    CAS  PubMed  Google Scholar 

  104. Kiel DP, et al. Genome-wide association with bone mass and geometry in the Framingham Heart Study. BMC Med Genet. 2007;8 Suppl 1:S14.

    PubMed Central  PubMed  Google Scholar 

  105. McLean RR, et al. Association of a common polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene with bone phenotypes depends on plasma folate status. J Bone Miner Res. 2004;19(3):410–8.

    CAS  PubMed  Google Scholar 

  106. Macdonald HM, et al. Methylenetetrahydrofolate reductase polymorphism interacts with riboflavin intake to influence bone mineral density. Bone. 2004;35(4):957–64.

    CAS  PubMed  Google Scholar 

  107. Zhu K, et al. The effects of homocysteine and MTHFR genotype on hip bone loss and fracture risk in elderly women. Osteoporos Int. 2009;20(7):1183–91.

    CAS  PubMed  Google Scholar 

  108. Yazdanpanah N, et al. Low dietary riboflavin but not folate predicts increased fracture risk in postmenopausal women homozygous for the MTHFR 677T allele. J Bone Miner Res. 2008;23(1):86–94.

    CAS  PubMed  Google Scholar 

  109. Steer CD, Emmett PM, Lewis SJ, Smith GD, Tobias JH. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism is associated with spinal BMD in 9-year-old children. J Bone Miner Res. 2009;24(1):117–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Ali AA, et al. Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology. 2005;146(3):1226–35.

    CAS  PubMed  Google Scholar 

  111. Grey A. Skeletal consequences of thiazolidinedione therapy. Osteoporos Int. 2008;19(2):129–37.

    CAS  PubMed  Google Scholar 

  112. Ogawa S, et al. Association of bone mineral density with a polymorphism of the peroxisome proliferator-activated receptor gamma gene: PPARgamma expression in osteoblasts. Biochem Biophys Res Commun. 1999;260(1):122–6.

    CAS  PubMed  Google Scholar 

  113. Rhee EJ, et al. The effects of C161→T polymorphisms in exon 6 of peroxisome proliferator-activated receptor-gamma gene on bone mineral metabolism and serum osteoprotegerin levels in healthy middle-aged women. Am J Obstet Gynecol. 2005;192(4):1087–93.

    CAS  PubMed  Google Scholar 

  114. Harslof T, et al. Polymorphisms of the peroxisome proliferator-activated receptor gamma (PPARgamma) gene are associated with osteoporosis. Osteoporos Int. 2011;22(10):2655–66.

    CAS  PubMed  Google Scholar 

  115. Ackert-Bicknell CL, et al. PPARG by dietary fat interaction influences bone mass in mice and humans. J Bone Miner Res. 2008;23(9):1398–408.

    PubMed Central  PubMed  Google Scholar 

  116. Neel JV. When some fine old genes meet a ‘new’ environment. World Rev Nutr Diet. 1999;84:1–18.

    CAS  PubMed  Google Scholar 

  117. Karasik D. Osteoporosis: an evolutionary perspective. Hum Genet. 2008;124(4):349–56.

    PubMed  Google Scholar 

  118. Nicolae DL, et al. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 2010;6(4):e1000888.

    PubMed Central  PubMed  Google Scholar 

  119. Dermitzakis ET. Regulatory variation and evolution: implications for disease. Adv Genet. 2008;61:295–306.

    CAS  PubMed  Google Scholar 

  120. Lin Q, Wagner W, Zenke M. Analysis of genome-wide DNA methylation profiles by BeadChip technology. Methods Mol Biol. 2013;1049:21–33.

    PubMed  Google Scholar 

  121. Beaty TH, et al. Evidence for gene-environment interaction in a genome wide study of nonsyndromic cleft palate. Genet Epidemiol. 2011;35(6):469–78.

    PubMed Central  PubMed  Google Scholar 

  122. Liu Y, et al. Genome-wide interaction-based association analysis identified multiple new susceptibility Loci for common diseases. PLoS Genet. 2011;7(3):e1001338.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Kussmann M, Krause L, Siffert W. Nutrigenomics: where are we with genetic and epigenetic markers for disposition and susceptibility? Nutr Rev. 2010;68 Suppl 1:S38–47.

    PubMed  Google Scholar 

  124. Macdonald HM, et al. Vitamin K1 intake is associated with higher bone mineral density and reduced bone resorption in early postmenopausal Scottish women: no evidence of gene-nutrient interaction with apolipoprotein E polymorphisms. Am J Clin Nutr. 2008;87(5):1513–20.

    CAS  PubMed  Google Scholar 

  125. Sonoda T, et al. Interaction between ESRalpha polymorphisms and environmental factors in osteoporosis. J Orthop Res. 2012;30(10):1529–34.

    CAS  PubMed  Google Scholar 

  126. Li X, He GP, Zhang B, Chen YM, Su YX. Interactions of interleukin-6 gene polymorphisms with calcium intake and physical activity on bone mass in pre-menarche Chinese girls. Osteoporos Int. 2008;19(11):1629–37.

    CAS  PubMed  Google Scholar 

  127. Stathopoulou MG, et al. Low-density lipoprotein receptor-related protein 5 polymorphisms are associated with bone mineral density in Greek postmenopausal women: an interaction with calcium intake. J Am Diet Assoc. 2010;110(7):1078–83.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Ferrari M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ferrari, S., Karasik, D. (2015). Gene–Diet Interactions on Bone. In: Holick, M., Nieves, J. (eds) Nutrition and Bone Health. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2001-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2001-3_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2000-6

  • Online ISBN: 978-1-4939-2001-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics