Skip to main content

Endocrine Hypertension and Chronic Kidney Disease

  • Chapter
  • First Online:
Chronic Kidney Disease and Hypertension

Abstract

Endocrine hypertension traditionally associates with conditions leading to activation of either mineralocorticoid, glucocorticoid, or adrenergic receptors. These conditions include primary aldosteronism and some forms of congenital adrenal hyperplasia, Cushing’s, and pheochromocytoma/paraganglioma syndromes, respectively. One needs to remember that these conditions are rare, but associate with significant morbidity and need to be included in the differential diagnosis of “unusual” hypertension, such as treatment resistant, episodic, rapidly progressive forms, or hypertension of the young. Biochemical proof of existing hormonal excess may be hard at times, because of low volume of hormonal hypersecretion and episodic secretion or dynamic change in the secretory profile which may be related to the tumor differentiation status. Coexisting chronic renal disease tremendously complicates biochemical diagnosis on multiple levels, including change in the hormonal milieu directly related to renal failure, and change of systemic hormones levels related to both intrinsic metabolic rate as well as renal excretion. Normal cutoff levels are not well established for different degrees of reduced glomerular filtration rate, while renal ability to excrete water and electrolytes can directly affect endogenous secretion of mineralocorticoids. To maximize efficacy of diagnosis of endocrine hypertension in patients with chronic renal disease, we recommend screening selected patients for primary aldosteronism, glucocorticoid excess, and pheochromocytoma/paraganglioma syndromes using recently published Endocrine Society guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Melcescu E, Koch CA. Syndromes of mineralocorticoid excess. In: Koch CA, Chrousos GP, Editors. Endocrine hypertension: underlying mechanisms and therapy. New York: Humana Press; 2013. pp. 33–50.

    Google Scholar 

  2. Melcescu E, Phillips J, Moll G, Subauste JS, Koch CA. 11Beta-hydroxylase deficiency and other syndromes of mineralocorticoid excess as a rare cause of endocrine hypertension. Horm Metab Res. 2012;44(12):867–78.

    CAS  PubMed  Google Scholar 

  3. Mula-Abed WA, Pambinezhuth FB, Al-Kindi MK, Al-Busaidi NB, Al-Muslahi HN, Al-Lamki MA. Congenital adrenal hyperplasia due to 17-alpha-hydoxylase/17,20-lyase deficiency presenting with hypertension and pseudohermaphroditism: first case report from Oman. Oman Med J. 2014;29(1):55–9.

    PubMed Central  PubMed  Google Scholar 

  4. Finkielstain GP, Kim MS, Sinaii N, Nishitani M, Van Ryzin C, Hill SC, Reynolds JC, Hanna RM, Merke DP. Clinical characteristics of a cohort of 244 patients with congenital adrenal hyperplasia. J Clin Endocrinol Metab. 2012;97(12):4429–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Hall ME, do Carmo JM, da Silva AA, Juncos LA, Wang Z, Hall JE. Obesity, hypertension, and chronic kidney disease. Int J Nephrol Renovasc Dis. 2014;7:75–88.

    PubMed Central  PubMed  Google Scholar 

  6. Byrd JB, Brook RD. A critical review of the evidence supporting aldosterone in the etiology and its blockade in the treatment of obesity-associated hypertension. J Hum Hypertens. 2014;28(1):3–9.

    CAS  PubMed  Google Scholar 

  7. Kang YS. Obesity associated hypertension: new insights into mechanism. Electrolyte Blood Press. 2013;11(2):46–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Lytsy P, Ingelsson E, Lind L, Arnlöv J, Sundström J. Interplay of overweight and insulin resistance on hypertension development. J Hypertens. 2014;32(4):834–9.

    CAS  PubMed  Google Scholar 

  9. Manrique C, Lastra G, Sowers JR. New insights into insulin action and resistance in the vasculature. Ann N Y Acad Sci. 2014;1311:138–50.

    CAS  PubMed  Google Scholar 

  10. Ullah MI, Uwaifo GI, Nicholas WC, Koch CA. Does vitamin D deficiency cause hypertension? Current evidence from clinical studies and potential mechanisms. Int J Endocrinol. 2010;2010:579640.

    PubMed Central  PubMed  Google Scholar 

  11. Tamez H, Kalim S, Thadhani RI. Does vitamin D modulate blood pressure? Curr Opin Nephrol Hypertens. 2013;22(2):204–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Larsen T, Mose FH, Bech JN, Hansen AB, Pedersen EB. Effect of cholecalciferol supplementation during winter months in patients with hypertension: a randomized, placebo-controlled trial. Am J Hypertens. 2012;25(11):1215–22.

    CAS  PubMed  Google Scholar 

  13. Forman JP, Scott JB, Ng K, Drake BF, Suarez EG, Hayden DL, Bennett GG, Chandler PD, Hollis BW, Emmons KM, Giovannucci EL, Fuchs CS, Chan AT. Effect of vitamin D supplementation on blood pressure in blacks. Hypertension. 2013;61(4):779–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Witham MD, Price RJ, Struthers AD, Donnan PT, Messow CM, Ford I, McMurdo ME. Cholecalciferol treatment to reduce blood pressure in older patients with isolated systolic hypertension: the VitDISH randomized controlled trial. JAMA Intern Med. 2013;173(18):1672–9.

    CAS  PubMed  Google Scholar 

  15. Pöss J, Mahfoud F, Ukena C, Esler MD, Schlaich M, Hering D, Cremers B, Laufs U, Böhm M. Association of vitamin D status and blood pressure response after renal denervation. Clin Res Cardiol. 2014;103(1):41–7.

    PubMed  Google Scholar 

  16. Witham MD, Ireland S, Houston JG, Gandy SJ, Waugh S, Macdonald TM, Mackenzie IS, Struthers AD. Vitamin D therapy to reduce blood pressure and left ventricular hypertrophy in resistant hypertension: randomized, controlled trial. Hypertension. 2014;63(4):706–12.

    CAS  PubMed  Google Scholar 

  17. Banzato C, Maffeis C, Maines E, Cavarzere P, Gaudino R, Fava C, Minuz P, Boner A, Antoniazzi F. Hypovitaminosis D and nocturnal hypertension in obese children: an interesting link. J Hum Hypertens. 2014;28(6):360–6.

    CAS  PubMed  Google Scholar 

  18. Fischer E, Hannemann A, Rettig R, Lieb W, Nauck M, Pallauf A, Bildingmaier M, Beuschlein F, Wallaschofski H, Reincke M. A high aldosterone-to-renin ratio is associated with high serum parathyroid hormone concentrations in the general population. J Clin Endocrinol Metab. 2014;99(3):965–71.

    CAS  PubMed  Google Scholar 

  19. van Ballegooijen AJ, Kestenbaum B, Sachs MC, de Boer IH, Siscovick DS, Hoofnagle AN, Ix JH, Visser M, Brouwer IA. Association of 25-hydroxyvitamin D and parathyroid hormone with incident hypertension: MESA (multi-ethnic study of atherosclerosis). J Am Coll Cardiol. 2014;63(12):1214–22.

    CAS  PubMed  Google Scholar 

  20. Krause R. Vitamin D and UV exposure in chronic kidney disease. Dermatoendocrinol. 2013;5(1):109–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Nasri H, Behradmanesh S, Ahmadi A, Rafieian-Kopaei M. Impact of oral vitamin D (cholecalciferol) replacement therapy on blood pressure in type 2 diabetes patients; a randomized, double-blind, placebo controlled clinical trial. J Nephropathol. 2014;3(1):29–33.

    PubMed Central  PubMed  Google Scholar 

  22. Mose FH, Vase H, Larsen T, Kancir AS, Kosierkiewic R, Jonczy B, Hansen AB, Oczachowska-Kulik AE, Thomsen IM, Bech JN, Pedersen EB. Cardiovascular effects of cholecalciferol treatment in dialysis patients-a randomized controlled trial. BMC Nephrol. 2014;15(1):50.

    PubMed Central  PubMed  Google Scholar 

  23. Sedighi O, Makhlough A, Kashi Z, Zahedi M. Relationship between serum parathyroid hormone and hypertension in hemodialysis patients. Iran J Kidney Dis. 2011;5(4):267–70.

    PubMed  Google Scholar 

  24. Chopra S, Cherian D, Jacob JJ. The thyroid hormone, parathyroid hormone and vitamin D associated hypertension. Indian J Endocrinol Metab. 2011;15(Suppl 4):S354–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Luigi P, Chiara FM, Laura Z, Cristiano M, Giuseppina C, Luciano C, Giuseppe P, Sabrina C, Susanna S, Antonio C, Giuseppe C, Giorgio de T, Claudio L. Arterial hypertension, metabolic syndrome and subclinical cardiovascular organ damage in patients with asymptomatic primary hyperparathyroidism before and after parathyroidectomy: preliminary results. Int J Endocrinol. 2012;2012:408295.

    PubMed Central  PubMed  Google Scholar 

  26. Ulu SM, Ulaslı A, Yaman F, Yaman G, Ozkececi G, Yuksel Ş. The relationship between vitamin D and PTH levels and cardiovascular risk in the elderly hypertensives. Clin Exp Hypertens. 2014;36(1):52–7.

    CAS  PubMed  Google Scholar 

  27. Buizert PJ1, van Schoor NM, Simsek S, Lips P, Heijboer AC, den Heijer M, Deeg DJ, Eekhoff EM. PTH: a new target in arteriosclerosis? J Clin Endocrinol Metab. 2013;98(10):E1583–90.

    CAS  PubMed  Google Scholar 

  28. Walker MD, Nickolas T, Kepley A, Lee JA, Zhang C, McMahon DJ, Silverberg SJ. Predictors of renal function in primary hyperparathyroidism. J Clin Endocrinol Metab. 2014;99(5):1885–92.

    CAS  PubMed  Google Scholar 

  29. Adamczyk A, Stolarz-Skrzypek K, Wesołowska A, Czarnecka D. Vitamin D and vitamin D receptor activators in treatment of hypertension and cardiovascular disease. Cardiovasc Hematol Disord Drug Targets. 2014 Feb 28 [Epub ahead of print].

    Google Scholar 

  30. Fortier C, Mac-Way F, De Serres SA, Marquis K, Douville P, Desmeules S, Larivière R, Agharazii M. Active vitamin D and accelerated progression of aortic stiffness in hemodialysis patients: a longitudinal observational study. Am J Hypertens. 2014 Apr 2 [Epub ahead of print].

    Google Scholar 

  31. Traish AM. Outcomes of testosterone therapy in men with testosterone deficiency. Steroids. 2014 May 24. pii: S0039-128X(14)00108-1.

    Google Scholar 

  32. Ullah MI, Washington T, Kazi M, Tamanna S, Koch CA. Testosterone deficiency as a risk factor for cardiovascular disease. Horm Metab Res. 2011;43(3):153–64.

    CAS  PubMed  Google Scholar 

  33. Sze L, Schmid C, Bloch KE, Bernays R, Brändle M. Effect of transsphenoidal surgery on sleep apnoea in acromegaly. Eur J Endocrinol. 2007;156(3):321–9.

    CAS  PubMed  Google Scholar 

  34. Lombardi G, Di Somma C, Grasso LF, Savanelli MC, Colao A, Pivonello R. The cardiovascular system in growth hormone excess and growth hormone deficiency. J Endocrinol Invest. 2012;35(11):1021–9.

    CAS  PubMed  Google Scholar 

  35. Marcisz C, Nowakowski G, Marcisz-Orzel M, Sioma-Markowska U, Gladysz R, Zajdel-Stachon M. The concentration of blood pressure regulating hormones in premenopausal women with isolated systolic hypertension related to hyperthyroidism. Neuro Endocrinol Lett. 2012;33(1):81–9.

    CAS  PubMed  Google Scholar 

  36. Kaminski G, Makowski K, Michałkiewicz D, Kowal J, Ruchala M, Szczepanek E, Gielerak G. The influence of subclinical hyperthyroidism on blood pressure, heart rate variability, and prevalence of arrhythmias. Thyroid. 2012;22(5):454–60.

    CAS  PubMed  Google Scholar 

  37. Cai Y, Ren Y, Shi J. Blood pressure levels in patients with subclinical thyroid dysfunction: a meta-analysis of cross-sectional data. Hypertens Res. 2011;34(10):1098–105.

    PubMed  Google Scholar 

  38. Ittermann T, Thamm M, Wallaschofski H, Rettig R, Völzke H. Serum thyroid-stimulating hormone levels are associated with blood pressure in children and adolescents. J Clin Endocrinol Metab. 2012;97(3):828–34.

    CAS  PubMed  Google Scholar 

  39. Ye Y, Xie H, Zeng Y, Zhao X, Tian Z, Zhang S. Association between subclinical hypothyroidism and blood pressure - a meta-analysis of observational studies. Endocr Pract. 2014;20(2):150–8.

    PubMed  Google Scholar 

  40. McManus F, MacKenzie SM, Freel EM. Central mineralocorticoid receptors, sympathetic activity, and hypertension. Curr Hypertens Rep. 2009;11(3):224–30.

    CAS  PubMed  Google Scholar 

  41. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, Lackland DT, LeFevre ML, MacKenzie TD, Ogedegbe O, Smith SC Jr, Svetkey LP, Taler SJ, Townsend RR, Wright JT Jr, Narva AS, Ortiz E. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). J Am Med Assoc. 2014;311(5):507–20.

    CAS  Google Scholar 

  42. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, Christiaens T, Cifkova R, De Backer G, Dominiczak A, Galderisi M, Grobbee DE, Jaarsma T, Kirchhof P, Kjeldsen SE, Laurent S, Manolis AJ, Nilsson PM, Ruilope LM, Schmieder RE, Sirnes PA, Sleight P, Viigimaa M, Waeber B, Zannad F. 2013 ESH/ESC practice guidelines for the management of arterial hypertension. Blood Press. 2014;23(1):3–16.

    PubMed  Google Scholar 

  43. Weber MA, Schiffrin EL, White WB, Mann S, Lindholm LH, Kenerson JG, Flack JM, Carter BL, Materson BJ, Ram CV, Cohen DL, Cadet JC, Jean-Charles RR, Taler S, Kountz D, Townsend RR, Chalmers J, Ramirez AJ, Bakris GL, Wang J, Schutte AE, Bisognano JD, Touyz RM, Sica D, Harrap SB. Clinical practice guidelines for the management of hypertension in the community: a statement by the American Society of Hypertension and the International Society of Hypertension. J Clin Hypertens (Greenwich). 2014;16(1):14–26.

    Google Scholar 

  44. Wright JT Jr, Fine LJ, Lackland DT, Ogedegbe G, Dennison Himmelfarb CR. Evidence supporting a systolic blood pressure goal of less than 150 mmHg in patients aged 60 years or older: the minority view. Ann Intern Med. 2014;160(7):499–503.

    PubMed  Google Scholar 

  45. Nwankwo T, Yoon SS, Burt V, Gu Q. Hypertension among adults in the United States: national health and nutrition examination survey, 2011–2012. NCHS Data Brief. 2013;(133):1–8.

    Google Scholar 

  46. Jennings GL, Touyz RM. Hypertension guidelines: more challenges highlighted by Europe. Hypertension. 2013;62(4):660–5.

    CAS  PubMed  Google Scholar 

  47. Seetho IW, Wilding JP. How to approach endocrine assessment in severe obesity? Clin Endocrinol (Oxf). 2013;79(2):163–7.

    Google Scholar 

  48. Lanfranco F, Motta G, Minetto MA, Baldi M, Balbo M, Ghigo E, Arvat E, Maccario M. Neuroendocrine alterations in obese patients with sleep apnea syndrome. Int J Endocrinol. 2010;2010:474518.

    PubMed Central  PubMed  Google Scholar 

  49. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, White A, Cushman WC, White W, Sica D, Ferdinand K, Giles TD, Falkner B, Carey RM, American Heart Association Professional Education Committee. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for high blood pressure research. Hypertension. 2008;51(6):1403–19.

    CAS  PubMed  Google Scholar 

  50. Ezzahti M, Moelker A, Friesema EC, van der Linde NA, Krestin GP, van den Meiracker AH. Blood pressure and neurohormonal responses to renal nerve ablation in treatment-resistant hypertension. J Hypertens. 2014;32(1):135–41.

    CAS  PubMed  Google Scholar 

  51. Egan BM, Zhao Y, Li J, Brzezinski WA, Todoran TM, Brook RD, Calhoun DA. Prevalence of optimal treatment regimens in patients with apparent treatment-resistant hypertension based on office blood pressure in a community-based practice network. Hypertension. 2013;62(4):691–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Drexler YR, Bomback AS. Definition, identification and treatment of resistant hypertension in chronic kidney disease patients. Nephrol Dial Transplant. 2014;29(7):1327–35.

    CAS  PubMed  Google Scholar 

  53. Sarafidis PA, Georgianos P, Bakris GL. Resistant hypertension-its identification and epidemiology. Nat Rev Nephrol. 2013;9(1):51–8.

    PubMed  Google Scholar 

  54. Wheeler DC, Becker GJ. Summary of KDIGO guideline. What do we really know about management of blood pressure in patients with chronic kidney disease? Kidney Int. 2013;83(3):377–83.

    CAS  PubMed  Google Scholar 

  55. Aaron KJ, Sanders PW. Role of dietary salt and potassium intake in cardiovascular health and disease: a review of the evidence. Mayo Clin Proc. 2013;88(9):987–9.

    CAS  PubMed  Google Scholar 

  56. Lv J, Ehteshami P, Sarnak MJ, Tighiouart H, Jun M, Ninomiya T, Foote C, Rodgers A, Zhang H, Wang H, Strippoli GF, Perkovic V. Effects of intensive blood pressure lowering on the progression of chronic kidney disease: a systematic review and meta-analysis. Can Med Assoc J. 2013;185(11):949–57.

    Google Scholar 

  57. East HE, Subauste JS, Gandhi A, Koch CA. About secondary causes of diabetes mellitus. J Miss State Med Assoc. 2012;53(11):380–3.

    PubMed  Google Scholar 

  58. Melcescu E, Gannon AW, Parent AD, Fratkin JF, Nicholas WC, Koch CA, Galhom A. Silent or subclinical corticotroph pituitary macroadenoma transforming into cushing disease: 11-year follow-up. Neurosurgery. 2013;72(1):E144–6.

    PubMed  Google Scholar 

  59. Singer J, Werner F, Koch CA, Bartels M, Aigner T, Lincke T, Fasshauer M, Paschke R. Ectopic Cushing’s syndrome caused by a well differentiated ACTH-secreting neuroendocrine carcinoma of the ileum. Exp Clin Endocrinol Diabetes. 2010;118(8):524–9.

    CAS  PubMed  Google Scholar 

  60. Fasshauer M, Lincke T, Witzigmann H, Kluge R, Tannapfel A, Moche M, Buchfelder M, Petersenn S, Kratzsch J, Paschke R, Koch CA. Ectopic Cushing’ syndrome caused by a neuroendocrine carcinoma of the mesentery. BMC Cancer. 2006;6:108.

    PubMed Central  PubMed  Google Scholar 

  61. Dominic JA, Koch M, Guthrie GP Jr, Galla JH. Primary aldosteronism presenting as myoglobinuric acute renal failure. Arch Intern Med. 1978;138(9):1433–4.

    CAS  PubMed  Google Scholar 

  62. Reincke M, Rump LC, Quinkler M, et al. Risk factors associated with a low glomerular filtration rate in primary aldosteronism. J Clin Endocrinol Metab. 2009;94:869–75.

    CAS  PubMed  Google Scholar 

  63. Wu VC, Chueh SC, Chang HW, et al. Association of kidney function with residual hypertension after treatment of aldosterone-producing adenoma. Am J Kidney Dis. 2009;54:665–73.

    CAS  PubMed  Google Scholar 

  64. Riemenschneider T, Bohle A. Morphologic aspects of low-potassium and low-sodium nephropathy. Clin Nephrol. 1983;19:271–9.

    CAS  PubMed  Google Scholar 

  65. Utsumi T, Kawamura K, Imamoto T, Nagano H, Tanaka T, Kamiya N, Nihei N, Naya Y, Suzuki H, Ichikawa T. Preoperative masked renal damage in Japanese patients with primary aldosteronism: identification of predictors for chronic kidney disease manifested after adrenalectomy. Int J Urol. 2013;20(7):685–91.

    PubMed  Google Scholar 

  66. Litynski M. [Hypertension caused by tumors of the adrenal cortex]. Pol Tyg Lek (Wars). 1953 Feb 9;8(6):204–8.

    Google Scholar 

  67. Funder JW, Carey RM, Fardella C, Gomez-Sanchez CE, Mantero F, Stowasser M, Young WF Jr, Montori VM, Endocrine Society. Case detection, diagnosis, and treatment of patients with primary aldosteronism: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2008;93(9):3266–81.

    CAS  PubMed  Google Scholar 

  68. Mulatero P, Williams TA, Monticone S, Viola A, Tizzani D, Crudo V, Burrello J, Veglio F. Primary aldosteronism: progress in diagnosis, therapy, and genetics. In: Koch CA, Chrousos GP (eds). Endocrine hypertension: underlying mechanisms and therapy. New York: Humana Press; 2013: 3–32.

    Google Scholar 

  69. Terata S, Kikuya M, Satoh M, Ohkubo T, Hashimoto T, Hara A, Hirose T, Obara T, Metoki H, Inoue R, Asayama K, Kanno A, Totsune K, Hoshi H, Satoh H, Sato H, Imai Y. Plasma renin activity and the aldosterone-to-renin ratio are associated with the development of chronic kidney disease: the Ohasama study. J Hypertens. 2012;30(8):1632–8.

    CAS  PubMed  Google Scholar 

  70. Drechsler C, Ritz E, Tomaschitz A, Pilz S, Schönfeld S, Blouin K, Bidlingmaier M, Hammer F, Krane V, März W, Allolio B, Fassnacht M, Wanner C. Aldosterone and cortisol affect the risk of sudden cardiac death in haemodialysis patients. Eur Heart J. 2013;34(8):578–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Conn JW, Knopf RF, Nesbit RM. Clinical characteristics of primary aldosteronism from an analysis of 145 cases. Am J Surg 1964;107:159–72.

    CAS  PubMed  Google Scholar 

  72. Laragh JH. Vasoconstriction: volume analysis for understanding and treating hypertension: the use of renin and aldosterone profiles. Am J Med 1973;55:261–74.

    CAS  PubMed  Google Scholar 

  73. Hollenberg NK. Aldosterone in the development and progression of renal injury. Kidney Int 2004;66:1–9.

    CAS  PubMed  Google Scholar 

  74. Rocha R, Funder JW. The pathophysiology of aldosterone in the cardiovascular system. Ann N Y Acad Sci. 2002;970:89–100.

    CAS  PubMed  Google Scholar 

  75. Horita Y, Inenaga T, Nakahama H, et al. Cause of residual hypertension after adrenalectomy in patients with primary aldosteronism. Am. J. Kidney Dis. 2001;37:884–9.

    CAS  PubMed  Google Scholar 

  76. Rocha R, Stier CT Jr. Pathophysiological effects of aldosterone in cardiovascular tissues. Trends Endocrinol Metab. 2001;12:308–14.

    CAS  PubMed  Google Scholar 

  77. Greene EL, Kren S, Hostetter TH. Role of aldosterone in the remnant kidney model in the rat. J Clin Invest. 1996;98:1063–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Ibrahim HN, Hostetter TH. Aldosterone in progressive renal disease. Semin Nephrol 2001;21:573–9.

    PubMed  Google Scholar 

  79. Epstein M. Aldosterone as a mediator of progressive renal disease: pathogenetic and clinical implications. Am J Kidney Dis 2001;37:677–88.

    CAS  PubMed  Google Scholar 

  80. Dworkin LD, Hostetter TH, Rennke HG, Brenner BM. Hemodynamic basis for glomerular injury in rats with desoxycorticosterone-salt hypertension. J Clin Invest. 1984;73:1448–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Uhrenholt TR, Schjerning J, Hansen PB, Nørregaard R, Jensen BL, Sorensen GL, Skøtt O. Rapid inhibition of vasoconstriction in renal afferent arterioles by aldosterone. Circ Res. 2003;93:1258–66.

    CAS  PubMed  Google Scholar 

  82. Hall JE, Granger JP, Smith MJ Jr, Premen AJ. Role of hemodynamics and arterial pressure in aldosterone “escape.” Hypertension. 1984;6:I183–92.

    CAS  PubMed  Google Scholar 

  83. Rocha R, Martin-Berger CL, Yang P, Scherrer R, Delyani J, McMahon E. Selective aldosterone blockade prevents angiotensin II/salt induced vascular inflammation in the rat heart. Endocrinology. 2002;143:4828–36.

    CAS  PubMed  Google Scholar 

  84. Nishimura M, Uzu T, Fujii T, Kuroda S, Nakamura S, Inenaga T, Kimura G. Cardiovascular complications in patients with primary aldosteronism. Am J Kidney Dis. 1999;33:261–6.

    CAS  PubMed  Google Scholar 

  85. Rossi GP, et al. Renal damage in primary aldosteronism. Results of the PAPY study. Hypertension. 2006;48:232–8.

    CAS  PubMed  Google Scholar 

  86. Catena C, et al. Relationships of plasma renin levels with renal function in patients with primary aldosteronism. Clin J Am Soc Nephrol. 2007;2:722–31.

    CAS  PubMed  Google Scholar 

  87. Beevers DG, Brown JJ, Ferriss JB, Fraser R, Lever AF, Robertson JI, Tree M. Renal abnormalities and vascular complications in primary aldosteronism: evidence of tertiary hyperaldosteronism. Q J Med 1976;45:401–10.

    CAS  PubMed  Google Scholar 

  88. Bravo EL, Fouad-Tarazi FM, Tarazi RC, Pohl M, Gifford RW, Vidt DG. Clinical implications of primary aldosteronism with resistant hypertension. Hypertension. 1988;11:207–11.

    Google Scholar 

  89. Ribstein J, Du Cailar G, Fesler P, Mimran A. Relative glomerular hyperfiltration in primary aldosteronism. J Am Soc Nephrol. 2005;16:1320–5.

    PubMed  Google Scholar 

  90. Sechi, LA, et al. Long-term renal outcomes in patients with primary aldosteronism. J Am Med Assoc. 2006;295:2638–45.

    CAS  Google Scholar 

  91. Chiou TT, Chiang PH, Fuh M, Liu RT, Lee WC, Lee WC, Ng HY, Tsai YC, Chuang FR, Huang CC, Lee CT. Factors determining cardiovascular and renal outcomes after adrenalectomy in patients with aldosterone-producing adrenal adenoma. Tohoku J Exp Med. 2009;218(1):17–24.

    CAS  PubMed  Google Scholar 

  92. Fourkiotis VG, Hanslik G, Hanusch F, Lepenies J, Quinkler M. Aldosterone and the kidney. Horm Metab Res. 2012;44(3):194–201.

    CAS  PubMed  Google Scholar 

  93. Wu VC, Yang SY, Lin JW, et al. Kidney impairment in primary aldosteronism. Clin Chim Acta. 2011;412:1319–25.

    CAS  PubMed  Google Scholar 

  94. Nishikawa T, Omura M, Saito J, Matsuzawa Y, Kino T. Editorial comment from Dr Nishikawa, et al. to preoperative masked renal damage in japanese patients with primary aldosteronism: identification of predictors for chronic kidney disease manifested after adrenalectomy. Int J Urol. 2013;20(7):693–4.

    PubMed Central  PubMed  Google Scholar 

  95. Lumachi F, Ermani M, Basso SM, Armanini D, Iacobone M, Favia G. Long-term results of adrenalectomy in patients with aldosterone-producing adenomas: multivariate analysis of factors affecting unresolved hypertension and review of the literature. Am Surg. 2005;71:864–9.

    PubMed  Google Scholar 

  96. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.

    CAS  PubMed  Google Scholar 

  97. Goligorsky MS, et al. Frontiers in nephrology: viewing the kidney through the heart-endothelial dysfunction in chronic kidney disease. J Am Soc Nephrol 2007;18:2833–5.

    PubMed  Google Scholar 

  98. Neade T, Uribarri J. Diet, inflammation and chronic kidney disease: getting to the heart of the matter. Semin Dial. 2008;21:331–7.

    PubMed  Google Scholar 

  99. Utsumi T, Kawamura K, Imamoto T, Nagano H, Tanaka T, Kamiya N, Nihei N, Naya Y, Suzuki H, Ichikawa T. Preoperative masked renal damage in Japanese patients with primary aldosteronism: identification of predictors for chronic kidney disease manifested after adrenalectomy. Int J Urol. 2013;20(7):685–91.

    PubMed  Google Scholar 

  100. Kawasaki Y, Ishidoya S, Kaiho Y, et al. Laparoscopic simultaneous bilateral adrenalectomy: assessment of feasibility and potential indications. Int J Urol. 2011;18:762–7.

    PubMed  Google Scholar 

  101. Matsuo S, Imai E, Horio M, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92.

    CAS  PubMed  Google Scholar 

  102. Franklin SS, Gustin W IV, Wong ND, et al. Hemodynamic patterns of age-related changes in blood pressure. The Framingham heart study. Circulation. 1997;96:308–15.

    CAS  PubMed  Google Scholar 

  103. Fischer E, Beuschlein F, Bidlingmaier M, Reincke M. Commentary on the endocrine society practice guidelines: consequences of adjustment of antihypertensive medication in screening of primary aldosteronism. Rev Endocr Metab Disord. 2011;12(1):43–8.

    CAS  PubMed  Google Scholar 

  104. Kotchen TA, Knight EL, Kashgarian M, Mulrow PJ. A study of the renin-angiotensin system in patients with severe chronic renal insufficiency. Nephron. 1970;7(4):317–30.

    CAS  PubMed  Google Scholar 

  105. Leenen FH, Galla SJ, Geyskes GG, Murdaugh HV, Shapiro AP. Effects of hemodialysis and saline loading on body fluid compartments, plasma renin activity and blood pressure in patients on chronic hemodialysis. Nephron. 1977;18(2):93–100.

    CAS  PubMed  Google Scholar 

  106. Saruta T, Nagahama S, Eguchi T, Oka M, Kanbegawa A. Renin, aldosterone and other mineralocorticoids in hyperkalemic patients with chronic renal failure showing mild azotemia. Nephron. 1981;29(3–4):128–32.

    CAS  PubMed  Google Scholar 

  107. Koshiyama H, Fujisawa T, Kuwamura N, Nakamura Y, Kanamori H, Oida E, Hara A, Suzuki T, Sasano H. A case of normoreninemic aldosterone-producing adenoma associated with chronic renal failure: case report and literature review. Endocrine. 2003;21(3):221–6.

    CAS  PubMed  Google Scholar 

  108. Tu W, Eckert GJ, Hannon TS, Liu H, Pratt LM, Wagner MA, Dimeglio LA, Jung J, Pratt JH. Racial differences in sensitivity of blood pressure to aldosterone. Hypertension. 2014;63(6):1212–8.

    CAS  PubMed  Google Scholar 

  109. Fardella CE, Mosso L, Gómez-Sánchez C, Cortés P, Soto J, Gómez L, Pinto M, Huete A, Oestreicher E, Foradori A, Montero J. Primary hyperaldosteronism in essential hypertensives: prevalence, biochemical profile, and molecular biology. J Clin Endocrinol Metab. 2000;85(5):1863–7.

    CAS  PubMed  Google Scholar 

  110. Juutilainen A, Savolainen K, Romppanen J, Turpeinen U, Hämäläinen E, Kemppainen J, Moilanen L, Pulkki K. Combination of LC-MS/MS aldosterone and automated direct renin in screening for primary aldosteronism. Clin Chim Acta. 2014;433C:209–15.

    Google Scholar 

  111. Lonati C, Bassani N, Gritti A, Biganzoli E, Morganti A. Measurement of plasma renin concentration instead of plasma renin activity decreases the positive aldosterone-to-renin ratio tests in treated patients with essential hypertension. J Hypertens. 2014;32(3):627–34.

    CAS  PubMed  Google Scholar 

  112. Rossi GP, Auchus RJ, Brown M, Lenders JW, Naruse M, Plouin PF, Satoh F, Young WF Jr. An expert consensus statement on use of adrenal vein sampling for the subtyping of primary aldosteronism. Hypertension. 2014;63(1):151–60.

    CAS  PubMed  Google Scholar 

  113. Burshteyn M, Cohen DL, Fraker DL, Trerotola SO. Adrenal venous sampling for primary hyperaldosteronism in patients with concurrent chronic kidney disease. J Vasc Interv Radiol. 2013;24(5):726–33.

    PubMed  Google Scholar 

  114. Koch CA. Endocrine hypertension: what is new? Rev Port Endocrinol Diabetes Metab. 2012;7(2):50–9.

    Google Scholar 

  115. Krapivinsky G, Kennedy ME, Nemec J, Medina I, Krapivinsky L, Clapham DE. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K(+)-channel proteins. Nature. 1995;374:135–41.

    CAS  PubMed  Google Scholar 

  116. Choi M, Scholl UI, Yue P, Björklund P, Zhao B, Nelson-Williams C, Ji W, Cho Y, Patel A, Men CJ, Lolis E, Wisgerhof MV, Geller DS, Mane S, Hellman P, Westin G, Åkerström G, Wang W, Carling T, Lifton RP. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science. 2011;331:768–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Charmandari E, Sertedaki A, Kino T, Merakou C, Hoffman DA, Hatch MM, Hurt DE, Lin L, Xekouki P, Stratakis CA, Chrousos GP. A novel point mutation in the KCNJ5 gene causing primary hyperaldosteronism and early-onset autosomal dominant hypertension. J Clin Endocrinol Metab. 2012;97(8):E1532–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Scholl UI, Nelson-Williams C, Yue P, Grekin R, Wyatt RJ, Dillon MJ, Couch R, Hammer LK, Harley FL, Farhi A, Wang WH, Lifton RP. Hypertension with or without adrenal hyperplasia due to different inherited mutations in the potassium channel KCNJ5. Proc Natl Acad Sci U S A. 2012;7:2533–8.

    Google Scholar 

  119. Koch CA, Pacak K, Chrousos GP. The molecular pathogenesis of hereditary and sporadic adrenocortical and adrenomedullary tumors.J Clin Endocrinol Metab. 2002;87:5367–84.

    CAS  PubMed  Google Scholar 

  120. Quack I, Vonend O, Rump LC. Familial Hyperaldosteronism I-III. Horm Metab Res. 2010;42:424–8.

    CAS  PubMed  Google Scholar 

  121. Mulatero P. A new form of hereditary primary aldosteronism: familial hyperaldosteronism type III. J Clin Endocrinol Metab. 2008;93(8):2972–4.

    CAS  PubMed  Google Scholar 

  122. McNicol AM. Diagnostic and molecular aspects of adrenal cortical tumors. Semin Diagn Pathol. 2013 Aug;30(3):197–206.

    PubMed  Google Scholar 

  123. Beuschlein F, Boulkroun S, Osswald A, Wieland T, Nielsen HN, Lichtenauer UD, Penton D, Schack VR, Amar L, Fischer E, Walther A, Tauber P, Schwarzmayr T, Diener S, Graf E, Allolio B, Samson-Couterie B, Benecke A, Quinkler M, Fallo F, Plouin PF, Mantero F, Meitinger T, Mulatero P, Jeunemaitre X, Warth R, Vilsen B, Zennaro MC, Strom TM, Reincke M. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat Genet. 2013;45(4):440–4, 444e1–2.

    CAS  PubMed  Google Scholar 

  124. Williams TA, Monticone S, Schack VR, Stindl J, Burrello J, Buffolo F, Annaratone L, Castellano I, Beuschlein F, Reincke M, Lucatello B, Ronconi V, Fallo F, Bernini G, Maccario M, Giacchetti G, Veglio F, Warth R, Vilsen B, Mulatero P. Somatic ATP1A1, ATP2B3, and KCNJ5 mutations in aldosterone-producing adenomas. Hypertension. 2014;63(1):188–95.

    CAS  PubMed  Google Scholar 

  125. Scholl UI, Goh G, Stölting G, de Oliveira RC, Choi M, Overton JD, Fonseca AL, Korah R, Starker LF, Kunstman JW, Prasad ML, Hartung EA, Mauras N, Benson MR, Brady T, Shapiro JR, Loring E, Nelson-Williams C, Libutti SK, Mane S, Hellman P, Westin G, Åkerström G, Björklund P, Carling T, Fahlke C, Hidalgo P, Lifton RP. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat Genet. 2013;45(9):1050–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Sechi LA, Colussi G, Di Fabio A, Catena C. Cardiovascular and renal damage in primary aldosteronism: outcomes after treatment. Am. J. Hypertens. 2010;23:1253–60.

    CAS  PubMed  Google Scholar 

  127. Catena C, Colussi G, Di Fabio A, et al. Mineralocorticoid antagonists treatment versus surgery in primary aldosteronism. Horm Metab Res. 2010;42:440–5.

    CAS  PubMed  Google Scholar 

  128. Colussi GL, Catena C, Sechi LA. Spironolactone, eplerenone, and the new aldosterone blockers in endocrine and primary hypertension. J Hypertens. 2013;31(1):3–15.

    CAS  PubMed  Google Scholar 

  129. Hollenberg NK. Aldosterone in the development and progression of renal injury. Kidney Int. 2004;66:1–9.

    CAS  PubMed  Google Scholar 

  130. Lam EY, et al. Mineralocorticoid receptor blockade but not steroid withdrawal reverses renal fibrosis in DOC/salt rats. Endocrinology. 2006;147:3623–9.

    CAS  PubMed  Google Scholar 

  131. Epstein M, et al. Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type −2 diabetes. Clin J Am Soc Nephrol. 2006;1:940–951

    CAS  PubMed  Google Scholar 

  132. Chua D, Lo A, Lo C. Spironolactone use in heart failure patients with end-stage renal disease on hemodialysis: is it safe? Clin Cardiol. 2010;33(10):604–8.

    PubMed  Google Scholar 

  133. Matsuda K, Shimamoto K, Ura N, Ogata H, Shizukuda Y, Iwakura M, Nozawa A, Kikuchi K, Iimura O. A case of primary aldosteronism with chronic renal failure undergoing hemodialysis treatment. Endocrinol Jpn. 1989;36(5):681–6.

    CAS  PubMed  Google Scholar 

  134. Karagiannis A, Tziomalos K, Papageorgiou A, Kakafika AI, Pagourelias ED, Anagnostis P, Athyros VG, Mikhailidis DP. Spironolactone versus eplerenone for the treatment of idiopathic hyperaldosteronism. Expert Opin Pharmacother. 2008;9(4):509–15.

    CAS  PubMed  Google Scholar 

  135. Newell-Price J, Bertagna X, Grossman AB, Nieman LK. Cushing’s syndrome. Lancet. 2006;367(9522):1605–17.

    CAS  PubMed  Google Scholar 

  136. Kantorovich V, Koch CA, Chrousos GP. Hypertension in patients with Cushing’s syndrome. In: Koch CA, Chrousos GP, editors. Endocrine hypertension: underlying mechanisms and therapy. New York: Humana Press; 2013. pp. 51–67.

    Google Scholar 

  137. Etxabe J, Vazquez JA. Morbidity and mortality in Cushing’s disease: an epidemiological approach. Clin Endocrinol. 1994;40:479–484.

    CAS  Google Scholar 

  138. Magiakou MA, Mastorakos G, Zachman K, Chrousos GP. Blood pressure in children and adolescents with Cushing’s syndrome before and after surgical cure. J Clin Endocrinol Metab. 1997;82:1734–8.

    CAS  PubMed  Google Scholar 

  139. Klett C, Ganten D, Hellmann W, Kaling M, Ryffel GU, Weimarehl T, Hackenthal E. Regulation of hepatic angiotensinogen synthesis and secretion by steroid hormones. Endocrinology. 1992;130:3660–8.

    CAS  PubMed  Google Scholar 

  140. Sato A, Suzuki H, Murakami M, Nakazato Y, Iwaita Y, Saruta T. Glucocorticoid increases angiotensin-II type 1 receptor and its gene expression. Hypertension. 1994;23:25–30.

    CAS  PubMed  Google Scholar 

  141. Ritchie CM, Sheridan B, Fraser R, Hadden DR, Kennedy AL, Riddell J, Atkinson AB. Studies on the pathogenesis of hypertension in Cushing’s disease and acromegaly. Q J Med. 1990;76:855–67.

    CAS  PubMed  Google Scholar 

  142. Saruta T, Suzuki H, Handa M, Igarashi Y, Kondo K, Senba S. Multiple factors contribute to the pathogenesis of hypertension in Cushing’s syndrome. J Clin Endocrinol Metab. 1986;62:275–9.

    CAS  PubMed  Google Scholar 

  143. N’Gankam V, Uehlinger D, Dick B, Frey BM, Frey FJ. Increased cortisol metabolites and reduced activity of 11beta-hydroxysteroid dehydrogenase in patients on hemodialysis. Kidney Int. 2002;61(5):1859–66.

    PubMed  Google Scholar 

  144. Quinkler M, Zehnder D, Lepenies J, Petrelli MD, Moore JS, Hughes SV, Cockwell P, Hewison M, Stewart PM. Expression of renal 11beta-hydroxysteroid dehydrogenase type 2 is decreased in patients with impaired renal function. Eur J Endocrinol. 2005;153(2):291–9.

    CAS  PubMed  Google Scholar 

  145. Mongia A, Vecker R, George M, Pandey A, Tawadrous H, Schoeneman M, Muneyyirci-Delale O, Nacharaju V, Ten S, Bhangoo A. Role of 11βHSD type 2 enzyme activity in essential hypertension and children with chronic kidney disease (CKD). J Clin Endocrinol Metab. 2012;97(10):3622–9.

    CAS  PubMed  Google Scholar 

  146. Mise K, Ubara Y, Sumida K, Hiramatsu R, Hasegawa E, Yamanouchi M, Hayami N, Suwabe T, Hoshino J, Sawa N, Hashimoto M, Fujii T, Sasano H, Takaichi K. Cushing’s syndrome after hemodialysis for 21 years. J Clin Endocrinol Metab. 2013;98(1):13–9.

    CAS  PubMed  Google Scholar 

  147. Al-Harbi T, Al-Shaikh A. Apparent mineralocorticoid excess syndrome: report of one family with three affected children. J Pediatr Endocrinol Metab. 2012;25(11–12):1083–8.

    CAS  PubMed  Google Scholar 

  148. Nosadini R, Del Prato S, Tiengo A, et al. Insulin resistance in Cushing’s syndrome. J Clin Endocrinol Metab. 1983;57:529–36.

    CAS  PubMed  Google Scholar 

  149. Tappy L, Randin D, Vollenweider P, et al. Mechanisms of dexamethasone-induced insulin resistance in healthy humans. J Clin Endocrinol Metab. 1984;79:1063–9.

    Google Scholar 

  150. Saruta T, Suzuki H, Handa M, Igarashi Y, Kondo K, Senba S. Multiple factors contribute to the pathogenesis of hypertension in Cushing’s syndrome. J Clin Endocrinol Metab. 1986;62:275–9.

    CAS  PubMed  Google Scholar 

  151. Sato A, Suzuki H, Murakami M, Nakazawa Y, Iwaita Y, Saruta T. Glucocorticoid increases angiotensin II type 1 receptor and its expression. Hypertension. 1994;23:25–30.

    CAS  PubMed  Google Scholar 

  152. Daniele S, Schepens CL, Daniele C, Angeletti G. Fundus abnormalities in Cushing’s disease: a preliminary report. Ophthalmologica. 1995;209:88–91.

    CAS  PubMed  Google Scholar 

  153. Josse RG, Bear R, Kovacs K, Higgins HP. Cushing’s syndrome due to unilateral nodular adrenal hyperplasia: a newpathophysiological unilateral nodular adrenal hyperplasia: a newpathophysiological entity? Acta Endocrinol (Copenh). 1980;93:495–504.

    CAS  Google Scholar 

  154. Dingman JF, Finkenstaedt JT, Laidlaw JC, Renold AE, Jenkins D, Merrill JP, Thorn GW. Influence of intravenously administered adrenal steroids on sodium and water excretion in normal and Addisionian subjects. Metabolism. 1958;7:608–23.

    CAS  PubMed  Google Scholar 

  155. Gill JR, Smith GW, Bartter FC, Gann DS, Ambrose IM. Restoration of water diuresis in Addisonian patients by expansion of volume of extracellular fluid. J Clin Invest. 1962;41:1078–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Cutler RE, Kleeman CR, Dowling JT, Maxwell MH, Koplowitz J. Mechanisms of impaired water excretion in adrenal and pituitary insufficiency. 3. Effect of extracellular or plasma volume expansion, or both, on impaired diuresis. J Clin Invest. 1962;41:1524–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Connell JMC, Whitworth JA, Davies DL, Lever AF, Richards AM, Fraser R. Effects of ACTH and cortisol administration on blood pressure, electrolyte metabolism, atrial natriuretic peptide and renal function in normal man. J Hypertens. 1987;5:425–33.

    CAS  PubMed  Google Scholar 

  158. Davis JO, Howell DS. Comparative effect of ACTH, cortisone and DCA on renal function, electrolyte excretion and water exchange in normal dogs. Endocrinology. 1953;52:245–55.

    CAS  PubMed  Google Scholar 

  159. Whitworth JA, Coghlan JP, Denton DA, Fan JSK, McDougall JG, Scoggins BA. Exaggerated natriuresis in ACTH hypertension in sheep. Nephron. 1978;22:473–8.

    CAS  PubMed  Google Scholar 

  160. DeBermudez L, Hayslett JP. Effect of methylprednisolone on renal function and zonal distribution of blood flow in the rat. Circ Res. 1972;31:44–52.

    CAS  PubMed  Google Scholar 

  161. Hall JE, Morse CL, Smith MJ, Young DB, Guyton AC. Control of arterial pressure and renal function during glucocorticoid excess in dogs. Hypertension. 1980;2:139–48.

    CAS  PubMed  Google Scholar 

  162. Connell JMC, Whitworth JA, Davies DL, Richards AM, Fraser R. Hemodynamic, hormonal and renal effects of adrenocorticotropic hormone in sodium-restricted man. J Hypertens. 1988;6:17–23.

    CAS  PubMed  Google Scholar 

  163. Kubota E, Hayashi K, Matsuda H, Honda M, Tokuyama H, Okubo K, Naitoh M, Arakawa K, Saruta T. Role of intrarenal angiotensin II in glucocorticoidinduced renal vasodilation. Clin Exp Nephrol. 2001;5:186–92.

    CAS  Google Scholar 

  164. Haentjens P, De Meirleir L, Abs R, Verhelst J, Popp K, Velkeniers B. Glomerular filtration rate in patients with Cushing’s disease: a matched casecontrol study. Eur J Endocrinol. 2005;153:819–29.

    CAS  PubMed  Google Scholar 

  165. Faggiano A, Pivonello R, Melis D, Alfieri R, Filippella M, Spagnuolo G, Salvatore F, Lombard G, Colao A. Evaluation of circulating levels and renal clearance of natural amino acids in patients with Cushing’s disease. J Endocrinol Invest. 2002;25:142–51.

    CAS  PubMed  Google Scholar 

  166. Faggiano A Pivonello R, Melis D, Filippella M, Di Somma C, Petretta M, Lombardi G, Colao A. Nephrolithiasis in Cushing’s disease: prevalence, etiopathogenesis, and modification after disease cure. J Clin Endocr Metab. 2003;88:2076–80.

    CAS  PubMed  Google Scholar 

  167. Brau JP, Lefebvre HP, Watson ADJ. Creatinine in the dog: a review. Vet Clin Pathol. 2003;32:162–79.

    Google Scholar 

  168. Mohler JL, Barton SD, Blouin RA, Cowen DL, Flanigan RC. The evaluation of creatinine clearance in spinal cord injury patients. J Urol. 1986;136:366–9.

    CAS  PubMed  Google Scholar 

  169. Hatton J, Parr MD, Blouin, RA. Estimation of creatinine clearance in patients with Cushing’s syndrome. Ann Pharmacother. 1989;23:974–7.

    CAS  Google Scholar 

  170. van Acker BA, Prummel MF, Weber JA, Wiersinga WM, Arisz L. Effect of prednisone on renal function in man. Nephron. 1993;65:4–259.

    Google Scholar 

  171. Feldman EC, Nelson RW. Canine hyperadrenocorticism (Cushing’s syndrome). In: Feldman, EC, Nelson, RW, editors. Canine and feline endocrinology and reproduction. St. Louis: Elsevier Saunders; 2004. pp. 252–357.

    Google Scholar 

  172. Ramsey IK, Tebb A, Harris E, Evans H, Herrtage, ME. Hyperparathyroidism in dogs with hyperadrenocorticism. J Small Anim Pract. 2005;46:531–6.

    CAS  PubMed  Google Scholar 

  173. Fowden AL, Forhead AJ. Endocrine regulation of feto-placental growth. Horm Res. 2009;72:257–65.

    CAS  PubMed  Google Scholar 

  174. Fowden AL, Giussani DA, Forhead, AJ. Endocrine and metabolic programming during intrauterine development. Early Hum Dev. 2005;81:723–34.

    CAS  PubMed  Google Scholar 

  175. Seckl JR, Holmes MC. Mechanisms of disease: glucocorticoids, their placental metabolism and fetal ‘programming’ of adult pathophysiology. Nat Clin Pract Endocrinol Metab. 2007;3:479–88.

    CAS  PubMed  Google Scholar 

  176. Constancia M, Angiolini E, Sandovici I, Smith P, Smith R, Kelsey G, Dean W, Ferguson-Smith A, Sibley CP, Reik W, Fowden A. Adaptation of nutrient supply to fetal demand in the mouse involves interaction between the Igf2 gene and placental transporter systems. Proc Natl Acad Sci U S A. 2005;102:19219–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Fuglsang J, Ovesen P. Aspects of placental growth hormone physiology. Growth Horm IGF Res. 2006;16:67–85.

    CAS  PubMed  Google Scholar 

  178. Dickinson H, Walker DW, Wintour EM, Moritz K. Maternal dexamethasone treatment at midgestation reduces nephron number and alters renal gene expression in the fetal spiny mouse. Am J Physiol-Regul Integr Comp Physiol. 2007;292:R453–61.

    CAS  PubMed  Google Scholar 

  179. Wintour EM, Moritz KM, Johnson K, Ricardo S, Samuel CS, Dodic A. Reduced nephron number in adult sheep, hypertensive as a result of prenatal glucocorticoid treatment. J Physiol-Lond. 2003;549:929–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Mazzi A, Fracassi F, Dondi F, Gentilini F, Famigli Bergamini P. Ratio of urinary protein to creatinine and albumin to creatinine in dogs with diabetes mellitus and hyperadrenocorticism. Vet Res Commun. 2008;32(Suppl 1):S299–S301.

    PubMed  Google Scholar 

  181. Monster TBM, Janssen WMT, de Jong PE, de Berg LTW. Corticosteroid use and its association with microalbuminuria in the adult population. Pulm Pharmacol Ther. 2003;16:349–53.

    CAS  PubMed  Google Scholar 

  182. Schellenberg S, Mettler M, Gentilini F, Portmann R, Glaus TM, Reusch CE. The effects of hydrocortisone on systemic arterial blood pressure and urinary protein excretion in dogs. J Vet Intern Med. 2008;22:273–81.

    CAS  PubMed  Google Scholar 

  183. Waters CB, Adams LG, ScottMoncrieff JC, DeNicola DB, Snyder PW, White MR, Gasparini M. Effects of glucocorticoid therapy on urine protein-tocreatinine ratios and renal morphology in dogs. J Vet Intern Med. 1997;11:172–7.

    CAS  PubMed  Google Scholar 

  184. Koh JM, Kim JY, Chung YE, Park JY, Shong YK, Hong SK, Kim GS, Lee KU. Increased urinary albumin excretion in Cushing’s syndrome: remission after correction of hypercortisolaemia. Clin Endocrinol. 2000;52:349–53.

    CAS  Google Scholar 

  185. Lees GE, Brown SA, Elliott J, Grauer GE, Vaden SL. Assessment andmanagement of proteinuria in dogs and cats: 2004 ACVIM forum consensus statement (small animal). J Vet Intern Med. 2005;19:377–85.

    PubMed  Google Scholar 

  186. Jain S, Sakhuja V, Bhansali A, Gupta KL, Dash RJ, Chugh KS. Corticotropin-dependent Cushing’s syndrome in a patient with chronic renal failure - a rare association. Ren Fail.1993;15:563–6.

    CAS  PubMed  Google Scholar 

  187. Sharp NA, Devlin JT, Rimmer JM. Renal failure obfuscates the diagnosis of Cushing’s disease. J Am Med Assoc. 1986;256:2564–5.

    CAS  Google Scholar 

  188. Walser M, Ward L. Progression of chronic renal failure is related to glucocorticoid production. Kidney Int. 1988;34:859–66.

    CAS  PubMed  Google Scholar 

  189. Littman MP, Robertson JL, Bovee KC. Spontaneous systemic hypertension in dogs—5 cases (1981–1983). J Am Vet Med Assoc.1988;193:486–94.

    CAS  PubMed  Google Scholar 

  190. Oppenheimer EH, Esterly JR. Glomerular lesions in nephrotic syndrome and their relation to cortisone therapy. Bull Johns Hopkins Hosp. 1963;113:158–72.

    CAS  PubMed  Google Scholar 

  191. Ortega TM, Feldman EC, Nelson RW, Willits N, Cowgill LD. Systemic arterial blood pressure and urine protein/creatinine ratio in dogs with hyperadrenocorticism. J Am Vet Med Assoc. 1996;209:1724–9.

    CAS  PubMed  Google Scholar 

  192. Scholz DA, Sprague RG, Kernohan JW. Cardiovascular and renal complications of Cushing’s syndrome—a clinical and pathological study of 17 cases. New Engl J Med. 1957;256:833–7.

    CAS  PubMed  Google Scholar 

  193. Reinehr T, Kulle A, Wolters B, Knop C, Lass N, Welzel M, Holterhus PM. Relationships between 24 h free urine cortisol concentrations and metabolic syndrome in obese children. J Clin Endocrinol Metab. 2014;99(7):2391–9.

    CAS  PubMed  Google Scholar 

  194. Nieman LK. Cushing’s syndrome. In: Hall JE, Nieman LK, editors. Handbook of diagnostic endocrinology. New York: Humana Press; 2003. pp. 67–83.

    Google Scholar 

  195. Nieman LK, Biller BM, Findling JW, Newell-Price J, Savage MO, Stewart PM, Montori VM. The diagnosis of Cushing’s syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2008;93(5):1526–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  196. Letizia C, Mazzaferro S, De Ciocchis A, Cerci S, Morabito S, Cinotti GA, Scavo D. Effects of haemodialysis session on plasma beta-endorphin, ACTH and cortisol in patients with end-stage renal disease. Scand J Urol Nephrol. 1996;30(5):399–402.

    CAS  PubMed  Google Scholar 

  197. Wallace EZ, Rosman P, Toshav N, Sacerdote A, Balthazar A. Pituitary-adrenocortical function in chronic renal failure: studies of episodic secretion of cortisol and dexamethasone suppressibility. J Clin Endocrinol Metab. 1980;50(1):46–51.

    CAS  PubMed  Google Scholar 

  198. Cooke CR, Whelton PK, Moore MA, Caputo RA, Bledsoe T, Walker WG. Dissociation of the diurnal variation of aldosterone and cortisol in anephric subjects. Kidney Int. 1979;15(6):669–75.

    CAS  PubMed  Google Scholar 

  199. Morineau G, Boudi A, Barka A, Gourmelen M, Degeilh F, Hardy N, al-Halnak A, Soliman H, Gosling JP, Julien R, Brerault JL, Boudou P, Aubert P, Villette JM, Pruna A, Galons H, Fiet J. Radioimmunoassay of cortisone in serum, urine, and saliva to assess the status of the cortisol-cortisone shuttle. Clin Chem. 1997;43(8 Pt 1):1397–407.

    CAS  PubMed  Google Scholar 

  200. Solomon R, Dubey A. Diltiazem enhances potassium disposal in subjects with end-stage renal disease. Am J Kidney Dis. 1992;19(5):420–6.

    CAS  PubMed  Google Scholar 

  201. Lacson E Jr, Levin NW. C-reactive protein and end-stage renal disease. Semin Dial. 2004;17(6):438–48.

    PubMed  Google Scholar 

  202. Workman RJ, Vaughn WK, Stone WJ. Dexamethasone suppression testing in chronic renal failure: pharmacokinetics of dexamethasone and demonstration of a normal hypothalamic-pituitary-adrenal axis. J Clin Endocrinol Metab. 1986;63(3):741–6.

    CAS  PubMed  Google Scholar 

  203. Nolan GE, Smith JB, Chavre VJ, Jubiz W. Spurious overestimation of plasma cortisol in patients with chronic renal failure. J Clin Endocrinol Metab. 1981;52(6):1242–5.

    CAS  PubMed  Google Scholar 

  204. Luger A, Lang I, Kovarik J, Stummvoll HK, Templ H. Abnormalities in the hypothalamic-pituitary-adrenocortical axis in patients with chronic renal failure. Am J Kidney Dis. 1987;9(1):51–4.

    CAS  PubMed  Google Scholar 

  205. Chan KC, Lit LC, Law EL, Tai MH, Yung CU, Chan MH, Lam CW. Diminished urinary free cortisol excretion in patients with moderate and severe renal impairment. Clin Chem. 2004;50(4):757–9.

    CAS  PubMed  Google Scholar 

  206. Siamopoulos KC, Dardamanis M, Kyriaki D, Pappas M, Sferopoulos G, Alevisou V. Pituitary adrenal responsiveness to corticotropin-releasing hormone in chronic uremic patients. Perit Dial Int. 1990;10(2):153–6.

    CAS  PubMed  Google Scholar 

  207. Ramirez G, Gomez-Sanchez C, Meikle WA, Jubiz W. Evaluation of the hypothalamic hypophyseal adrenal axis in patients receiving long-term hemodialysis. Arch Intern Med. 1982;142(8):1448–52.

    CAS  PubMed  Google Scholar 

  208. Lindholm J. Cushing’s disease, pseudo-Cushing states and the dexamethasone test: a historical and critical review. Pituitary. 2014;17(4):374–80.

    CAS  PubMed  Google Scholar 

  209. Friedman TC. An update on the overnight dexamethasone suppression test for the diagnosis of Cushing’s syndrome: limitations in patients with mild and/or episodic hypercortisolism. Exp Clin Endocrinol Diabetes. 2006;114(7):356–60.

    CAS  PubMed  Google Scholar 

  210. Capel I, Giménez-Palop O, Subías D, Rigla M. Topiramate as a cause of false positive in overnight 1 Mg. Dexamethasone suppression test (DST). Endocr Pract. 2014;18:1–7.

    Google Scholar 

  211. Manetti L, Rossi G, Grasso L, Raffaelli V, Scattina I, Del Sarto S, Cosottini M, Iannelli A, Gasperi M, Bogazzi F, Martino E. Usefulness of salivary cortisol in the diagnosis of hypercortisolism: comparison with serum and urinary cortisol. Eur J Endocrinol. 2013;168(3):315–21.

    CAS  PubMed  Google Scholar 

  212. Carrasco CA, García M, Goycoolea M, Cerda J, Bertherat J, Padilla O, Meza D, Wohllk N, Quiroga T. Reproducibility and performance of one or two samples of salivary cortisol in the diagnosis of Cushing’s syndrome using an automated immunoassay system. Endocrine. 2012;41(3):487–93.

    CAS  PubMed  Google Scholar 

  213. Raff H, Trivedi H. Circadian rhythm of salivary cortisol, plasma cortisol, and plasma ACTH in end-stage renal disease. Endocr Connect. 2012;2(1):23–31.

    PubMed Central  PubMed  Google Scholar 

  214. Liu H, Bravata DM, Cabaccan J, Raff H, Ryzen E. Elevated late-night salivary cortisol levels in elderly male type 2 diabetic veterans. Clin Endocrinol (Oxf). 2005;63(6):642–9.

    CAS  Google Scholar 

  215. Arregger AL, Cardoso EM, Tumilasci O, Contreras LN. Diagnostic value of salivary cortisol in end stage renal disease. Steroids. 2008;73(1):77–82.

    CAS  PubMed  Google Scholar 

  216. Goh G, Scholl UI, Healy JM, Choi M, Prasad ML, Nelson-Williams C, Kuntsman JW, Korah R, Suttorp AC, Dietrich D, Haase M, Willenberg HS, Stålberg P, Hellman P, Akerström G, Björklund P, Carling T, Lifton RP. Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors. Nat Genet. 2014;46(6):613–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  217. Beuschlein F, Fassnacht M, Assié G, Calebiro D, Stratakis CA, Osswald A, Ronchi CL, Wieland T, Sbiera S, Faucz FR, Schaak K, Schmittfull A, Schwarzmayr T, Barreau O, Vezzosi D, Rizk-Rabin M, Zabel U, Szarek E, Salpea P, Forlino A, Vetro A, Zuffardi O, Kisker C, Diener S, Meitinger T, Lohse MJ, Reincke M, Bertherat J, Strom TM, Allolio B. Constitutive activation of PKA catalytic subunit in adrenal Cushing’s syndrome. N Engl J Med. 2014;370(11):1019–28

    CAS  PubMed  Google Scholar 

  218. Assié G, Libé R, Espiard S, Rizk-Rabin M, Guimier A, Luscap W, Barreau O, Lefèvre L, Sibony M, Guignat L, Rodriguez S, Perlemoine K, René-Corail F, Letourneur F, Trabulsi B, Poussier A, Chabbert-Buffet N, Borson-Chazot F, Groussin L, Bertagna X, Stratakis CA, Ragazzon B, Bertherat J. ARMC5 mutations in macronodular adrenal hyperplasia with Cushing’s syndrome. N Engl J Med. 2013;369(22):2105–14.

    PubMed  Google Scholar 

  219. Dworakowska D, Grossman AB. The molecular pathogenesis of corticotroph tumours. Eur J Clin Invest. 2012;42(6):665–76.

    CAS  PubMed  Google Scholar 

  220. Benítez Velazco A1, Pacheco Capote C, Latre Romero JM. Ectopic Cushing’s syndrome caused by a functioning pancreatic neuroendocrine tumour in a patient with von Hippel-Lindau disease. Rev Esp Med Nucl. 2008;27(1):29–33.

    Google Scholar 

  221. Gläsker S, Smith J, Raffeld M, Li J, Oldfield EH, Vortmeyer AO. VHL-deficient vasculogenesis in hemangioblastoma. Exp Mol Pathol. 2014;96(2):162–7.

    PubMed  Google Scholar 

  222. Koch CA. Molecular pathogenesis of MEN2-associated tumors. Fam Cancer. 2005;4(1):3–7

    PubMed  Google Scholar 

  223. Ballav C, Naziat A, Mihai R, Karavitaki N, Ansorge O, Grossman AB. Mini-review: pheochromocytomas causing the ectopic ACTH syndrome. Endocrine. 2012;42(1):69–73.

    CAS  PubMed  Google Scholar 

  224. Mazaris E, Tsiotras A. Molecular pathways in prostate cancer. Nephrourol Mon. 2013;5(3):792–800.

    PubMed Central  PubMed  Google Scholar 

  225. Reid MD, Saka B, Balci S, Goldblum AS, Adsay NV. Molecular genetics of pancreatic neoplasms and their morphologic correlates: an update on recent advances and potential diagnostic applications. Am J Clin Pathol. 2014;141(2):168–80.

    CAS  PubMed  Google Scholar 

  226. Charmandari E, Nicolaides NC, Chrousos GP. Adrenal insufficiency. Lancet. 2014. pii: S0140-6736(13)61684–0.

    Google Scholar 

  227. Arregger AL, Cardoso EM, Zucchini A, Aguirre EC, Elbert A, Contreras LN. Adrenocortical function in hypotensive patients with end stage renal disease. Steroids. 2014;84C:57–63.

    Google Scholar 

  228. Aranda G, Enseñat J, Mora M, Puig-Domingo M, Martínez de Osaba MJ, Casals G, Verger E, Ribalta MT, Hanzu FA, Halperin I. Long-term remission and recurrence rate in a cohort of Cushing’s disease: the need for long-term follow-up. Pituitary. 2014 Apr 19 [Epub ahead of print].

    Google Scholar 

  229. Krakoff J, Koch CA, Calis KA, Alexander RH, Nieman LK. Use of a parenteral propylene glycol-containing etomidate preparation for the long-term management of ectopic Cushing’s syndrome. J Clin Endocrinol Metab. 2001;86(9):4104–8.

    CAS  PubMed  Google Scholar 

  230. Uwaifo GI, Koch CA, Hirshberg B, Chen CC, Hartzband P, Nieman LK, Pacak K. Is there a therapeutic role for octreotide in patients with ectopic Cushing’s syndrome? J Endocrinol Invest. 2003;26(8):710–7.

    CAS  PubMed  Google Scholar 

  231. Fleseriu M, Biller BM, Findling JW, Molitch ME, Schteingart DE, Gross C. SEISMIC study investigators. Mifepristone, a glucocorticoid receptor antagonist, produces clinical and metabolic benefits in patients with Cushing’s syndrome. J Clin Endocrinol Metab. 2012;97(6):2039–49.

    CAS  PubMed  Google Scholar 

  232. Vance ML. Medical management of Cushing’s syndrome. Endocr Pract. 2013;19(2):193.

    PubMed  Google Scholar 

  233. Erickson D, Kudva YC, Ebersold MJ, Thompson GB, Grant CS, van Heerden JA, Young WF Jr. Benign paragangliomas: clinical presentation and treatment outcomes in 236 patients. J Clin Endocrinol Metab. 2001;86(11):5210–6.

    CAS  PubMed  Google Scholar 

  234. Tischler AS, Pacak K, Eisenhofer G. The adrenal medulla and extra-adrenal paraganglia: then and now. Endocr Pathol. 2014;25(1):49–58.

    CAS  PubMed  Google Scholar 

  235. Robles JF, Mercado Asis LB, Pacak K. Pheochromocytoma: unmasking the chameleon. In: Koch CA, Chrousos GP, editors. Endocrine hypertension: underlying mechanisms and therapy. New York: Humana Press; 2013. pp. 123–48.

    Google Scholar 

  236. Plouin PF, Degoulet P, Tugayé A, Ducrocq MB, Ménard J. Screening for pheochromocytoma: in which hypertensive patients? A semiological study of 2,585 patients including 11 with pheochromocytoma. Nouv Presse Med. 1981;10(11):869–72.

    CAS  PubMed  Google Scholar 

  237. Kopetschke R, Slisko M, Kilisli A, Tuschy U, Wallaschofski H, Fassnacht M, Ventz M, Beuschlein F, Reincke M, Reisch N, Quinkler M. Frequent incidental discovery of pheochromocytoma: data from a German cohort of 201 pheochromocytomas. Eur J Endocrinol. 2009;161(2):355–61.

    CAS  PubMed  Google Scholar 

  238. Vanderveen KA, Thompson SM, Callstrom MR, Young WF Jr, Grant CS, Farley DR, Richards ML, Thompson GB. Biopsy of pheochromocytomas and paragangliomas: potential for disaster. Surgery. 2009;146(6):1158–66.

    PubMed  Google Scholar 

  239. Stolk RF, Bakx C, Mulder J, Timmers HJ, Lenders JW. Is the excess cardiovascular morbidity in pheochromocytoma related to blood pressure or to catecholamines? J Clin Endocrinol Metab. 2013;98(3):1100–6.

    CAS  PubMed  Google Scholar 

  240. Kudva YC, Sawka AM, Young Jr WF. Clinical review 164: the laboratory diagnosis of adrenal pheochromocytoma: the Mayo Clinic experience. J Clin Endocrinol Metab. 2003;88(10):4533–9.

    CAS  PubMed  Google Scholar 

  241. Wiesner TD, Blüher M, Windgassen M, Paschke R. Improvement of insulin sensitivity after adrenalectomy in patients with pheochromocytoma. J Clin Endocrinol Metab. 2003;88(8):3632–6.

    CAS  PubMed  Google Scholar 

  242. Stringel G, Ein SH, Creighton R, Daneman D, Howard N, Filler RM. Pheochromocytoma in children—an update. J Pediatr Surg. 1980;15:496–500.

    CAS  PubMed  Google Scholar 

  243. Kizer JR, Koniaris LS, Edelman JD, St John Sutton MG. Pheochromocytoma crisis, cardiomyopathy, and hemodynamic collapse. Chest. 2000;118:1221–3.

    CAS  PubMed  Google Scholar 

  244. Lenders JW, Duh QY, Eisenhofer G, Gimenez-Roqueplo AP, Grebe SK, Murad MH, Naruse M, Pacak K, Young WF Jr. Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2014;99(6):1915–42.

    CAS  PubMed  Google Scholar 

  245. Rana HQ, Rainville IR, Vaidya A. Genetic testing in the clinical care of patients with pheochromocytoma and paraganglioma. Curr Opin Endocrinol Diabetes Obes. 2014;21(3):166–76.

    PubMed  Google Scholar 

  246. Gu LQ, Zhao L, Liu JM, Su TW, Wang WQ, Ning G. Phaeochromocytoma presenting with coexisting acute renal failure, acidosis and in hyperglycaemic emergency. Br J Biomed Sci. 2008;65:153–5.

    CAS  PubMed  Google Scholar 

  247. Fernandes GH, Silva Júnior GB, Garcia JH, Sobrinho CR, Albuquerque PL, Libório AB, Daher EF. Delayed diagnosis of pheochromocytoma associated with chronic kideny disease. Indian J Nephrol. 2010;20:166–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  248. Nyska A, Haseman JK, Hailey JR, Smetana S, Maronpot RR. The association between severe nephropathy and pheochromocytoma in the male F344 Rat—the national toxicology program experience. Toxicol Pathol. 1999;27:456–62.

    CAS  PubMed  Google Scholar 

  249. Pickard JL, Ross G, Silver D. Coexisting extraadrenal pheochromocytoma and renal artery stenosis: a case report and review of the pathophysiology. J Pediatr Surg. 1995;30:1613–5.

    CAS  PubMed  Google Scholar 

  250. Kaufman JJ. Pheochromocytoma and stenosis of the renal artery. Surg Gynecol Obstet. 1983;156:11–5.

    CAS  PubMed  Google Scholar 

  251. Brewster DC, Jensen SR, Novelline RA. Reversible renal artery stenosis associated with pheochromocytoma. J Am Med Assoc. 1982;248:1094–6.

    CAS  Google Scholar 

  252. Eason JD, Evans N, Kenney I, et al. Clinical quiz. Left perirenal phaeochromocytoma and left upper pole renal artery stenosis. Combined excision of tumor and left total nephroadrenalectomy, after full alpha-o and beta-adrenergic blockade was achieved. Pediatr Nephrol. 1996;10:804–7.

    CAS  PubMed  Google Scholar 

  253. Gill IS, Meraney AM, Bravo EL, et al. Pheochromocytoma coexisting with renal artery lesions. J Urol. 2000;164:296–301.

    CAS  PubMed  Google Scholar 

  254. Converse RL, Jacobsen TN, Toto RD, et al. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med. 1992;327:1912–8.

    PubMed  Google Scholar 

  255. Neumann J, Ligtenberg G, Klein II, et al. Sympathetic hyperactivity in chronic kidney disease: pathogenesis, clinical relevance, and treatment. Kidney Int. 2004;65:1568–76.

    PubMed  Google Scholar 

  256. Stumvoll M, Radjaipour M, Seif F. Diagnostic considerations in pheochromocytoma and chronic hemodialysis: case report and review of the literature. Am J Nephrol. 1995;15:147.

    CAS  PubMed  Google Scholar 

  257. Laederach K, Weidmann P. Plasma and urinary catecholamines as related to renal function in man. Kidney Int. 1987;31:107–11.

    CAS  PubMed  Google Scholar 

  258. Roberts NB, Dutton J, Mcclelland P, Bone JM. Urinary catecholamine excretion in relation to renal function. Ann Clin Biochem. 1999;36(Pt 5):587–91.

    CAS  PubMed  Google Scholar 

  259. Darwish R, et al. Plasma and urinary catecholamines and their metabolites in chronic renal failure Arch Intern Med. 1984;144:69–71.

    CAS  PubMed  Google Scholar 

  260. Chauveau D, Martinez F, Houhou S, Grünfeld JP. Malignant hypertension secondary to pheochromocytoma in a hemodialyzed patient. Am J Kidney Dis. 1993;21(1):52–3.

    CAS  PubMed  Google Scholar 

  261. Eisenhofer G, Huysmans F, Pacak K, Walther MM, Sweep FC, Lenders JW. Plasma metanephrines in renal failure. Kidney Int. 2005;67(2):668–77.

    CAS  PubMed  Google Scholar 

  262. Marini M, Fathi M, Vallotton M. Determination of serum metanephrines in the diagnosis of pheochromocytoma. Ann Endocrinol (Paris). 1994;54:337–42.

    CAS  Google Scholar 

  263. Niculescu DA, Ismail G, Poiana C. Plasma free metanephrine and normetanephrine levels are increased in patients with chronic kidney disease. Endocr Pract. 2014;20(2):139–44.

    PubMed  Google Scholar 

  264. Chauveau D, Duvic C, Chrétien Y, Paraf F, Droz D, Melki P, Hélénon O, Richard S, Grünfeld JP. Renal involvment in von Hippel Lindau disease. Kidney Int. 1996;50:944–51.

    CAS  PubMed  Google Scholar 

  265. Eisenhofer G, Lenders JW, Linehan WM, Walther MM, Goldstein DS, Keiser HR. Plasma normetanephrine and metanephrine for detecting pheochromocytoma in von Hippel-Lindau disease and multiple endocrine neoplasia type 2. N Engl J Med. 1999;340:1872–9.

    CAS  PubMed  Google Scholar 

  266. Walther MM, Reiter R, Keiser HR, Choyke PL, Venzon D, Hurley K, Gnarra JR, Reynolds JC, Glenn GM, Zbar B, Linehan WM. Clinical and genetic characterization of pheochromocytoma in von Hippel-Lindau families: comparison with sporadic pheochromocytoma gives insight into natural history of pheochromocytoma. J Urol. 162:659–64.

    Google Scholar 

  267. Yver L, Jaulin JP, Nanhuck H, Rivet P. Pheochromocytoma in a long-term hemodialysis patient. Am J Kidney Dis. 1991;18:276–7.

    CAS  PubMed  Google Scholar 

  268. Fillastre JP, Godin M, Moulin B, et al. Pheochromocytoma in a renal failure patient treated by hemodialysis. Am J Kidney Dis. 1992;19:94–5.

    CAS  PubMed  Google Scholar 

  269. Yuasa S, Bandai H, Yuri T, et al. Successful resection of a pheochromocytoma in a hemodialysis patient. Am J Nephrol. 1992;12:111–5.

    CAS  PubMed  Google Scholar 

  270. Ligntenberg PJ, Blankestijn PJ, Koomans HA. Phaeochromocytoma in a long-term haemodialysis patient; diagnosis and management. Nephrol Dial Transplant. 1993;8:1172–3.

    Google Scholar 

  271. Duncan MW, Compton P, Lazarus L, et al. Measurement of norepinephrine and 3,4-dihydroxyphenylgycol in urine and plasma for the diagnosis of pheochromocytoma. N Engl J Med. 1988;319:136–42.

    CAS  PubMed  Google Scholar 

  272. Daul AE, Wang XL, Michel MC, Brodde OE. Arterial hypotension in chronic hemodialyzed patients. Kidney Int. 1987;32:728.

    CAS  PubMed  Google Scholar 

  273. Osinga TE, van den Eijnden MH, Kema IP, Kerstens MN, Dullaart RP, de Jong WH, Sluiter WJ, Links TP, van der Horst-Schrivers AN. Unilateral and bilateral adrenalectomy for pheochromocytoma requires adjustment of urinary and plasma metanephrine reference ranges. J Clin Endocrinol Metab. 2013;98(3):1076–83.

    CAS  PubMed  Google Scholar 

  274. Goldstein RE, O’Neill JA Jr, Holcomb GW 3rd, Morgan WM 3rd, Neblett WW 3rd, Oates JA, Brown N, Nadeau J, Smith B, Page DL, Abumrad NN, Scott HW Jr. Clinical experience over 48 years with pheochromocytoma. Ann Surg. 1999;229(6):755–64; discussion 764–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  275. Amar L, Fassnacht M, Gimenez-Roqueplo AP, Januszewicz A, Prejbisz A, Timmers H, Plouin PF. Long-term postoperative follow-up in patients with apparently benign pheochromocytoma and paraganglioma. Horm Metab Res. 2012;44(5):385–9.

    CAS  PubMed  Google Scholar 

  276. Singer J, Koch CA, Kassahun W, Lamesch P, Eisenhofer G, Kluge R, Lincke T, Seiwerts M, Borte G, Schierle K, Paschke R. A patient with a large recurrent pheochromocytoma demonstrating the pitfalls of diagnosis. Nat Rev Endocrinol. 2011;7(12):749–55.

    CAS  PubMed  Google Scholar 

  277. Fallon SC, Feig D, Lopez ME, Brandt ML. The utility of cortical-sparing adrenalectomy in pheochromocytomas associated with genetic syndromes. J Pediatr Surg. 2013;48(6):1422–5.

    PubMed  Google Scholar 

  278. Därr R, Pamporaki C, Peitzsch M, Miehle K, Prejbisz A, Peczkowska M, Weismann D, Beuschlein F, Sinnott R, Bornstein SR, Neumann HP, Januszewicz A, Lenders J, Eisenhofer G. Biochemical diagnosis of phaeochromocytoma using plasma-free normetanephrine, metanephrine and methoxytyramine: importance of supine sampling under fasting conditions. Clin Endocrinol (Oxf). 2014;80(4):478–86.

    Google Scholar 

  279. Eisenhofer G, Lenders JW, Siegert G, Bornstein SR, Friberg P, Milosevic D, Mannelli M, Linehan WM, Adams K, Timmers HJ, Pacak K. Plasma methoxytyramine: a novel biomarker of metastatic pheochromocytoma and paraganglioma in relation to established risk factors of tumour size, location and SDHB mutation status. Eur J Cancer. 2012;48(11):1739–49.

    CAS  PubMed Central  PubMed  Google Scholar 

  280. Zuber S, Wesley R, Prodanov T, Eisenhofer G, Pacak K, Kantorovich V. Clinical utility of chromogranin A in SDHx-related paragangliomas. Eur J Clin Invest. 2014;44(4):365–71.

    CAS  PubMed  Google Scholar 

  281. Miehle K, Kratzsch J, Lenders JW, Kluge R, Paschke R, Koch CA. Adrenal incidentaloma diagnosed as pheochromocytoma by plasma chromogranin A and plasma metanephrines. J Endocrinol Invest. 2005;28(11):1040–2.

    CAS  PubMed  Google Scholar 

  282. Hsiao RJ, Metger MS, O’Connor DT. Chromogranin A in uremia: progressive retention of immunoreactive fragments. Kidney Int. 1990;37:955–64.

    CAS  PubMed  Google Scholar 

  283. Tramonti G, Ferdeghini M, Annichiarcico C, et al. Relationship between renal function and blood level of chromogranin A. Ren Fail. 2001;23:449–57.

    CAS  PubMed  Google Scholar 

  284. Hoeldtke RD, Israel BC, Cavanaugh ST, Krishna GG. Effect of renal failure on plasma dihydroxyphenylglycol, 3-methoxy-4-hydroxyphenylglycol, and vanillymandelic acid. Clin Chim Acta. 1989;184:195–6.

    CAS  PubMed  Google Scholar 

  285. Raja A, Leung K, Stamm M, Girgis S, Low G. Multimodality imaging findings of pheochromocytoma with associated clinical and biochemical features in 53 patients with histologically confirmed tumors. Am J Roentgenol. 2013;201(4):825–33.

    Google Scholar 

  286. Pappachan JM, Raskauskiene D, Sriraman R, Edavalath M, Hanna FW. Diagnosis and management of pheochromocytoma: a practical guide to clinicians. Curr Hypertens Rep. 2014;16(7):442.

    PubMed  Google Scholar 

  287. Koch CA, Pacak K, Chrousos GP. The molecular pathogenesis of hereditary and sporadic adrenocortical and adrenomedullary tumors. J Clin Endocrinol Metab. 2002;87(12):5367–84.

    CAS  PubMed  Google Scholar 

  288. Gimm O, Koch CA, Januszewicz A, Opocher G, Neumann HP. The genetic basis of pheochromocytoma. Front Horm Res. 2004;31:45–60.

    CAS  PubMed  Google Scholar 

  289. Majumdar S, Friedrich CA, Koch CA, Megason GC, Fratkin JD, Moll GW. Compound heterozygous mutation with a novel splice donor region DNA sequence variant in the succinate dehydrogenase subunit B gene in malignant paraganglioma. Pediatr Blood Cancer. 2010;54(3):473–5.

    PubMed  Google Scholar 

  290. Martucci VL, Pacak K. Pheochromocytoma and paraganglioma: diagnosis, genetics, management, and treatment. Curr Probl Cancer. 2014;38(1):7–41.

    PubMed Central  PubMed  Google Scholar 

  291. Aprill BS, Drake AJ 3rd, Lasseter DH, Shakir KM. Silent adrenal nodules in von Hippel-Lindau disease suggest pheochromocytoma. Ann Intern Med. 1994;120(6):485–7.

    CAS  PubMed  Google Scholar 

  292. Gill AJ, Benn DE, Chou A, Clarkson A, Muljono A, Meyer-Rochow GY, Richardson AL, Sidhu SB, Robinson BG, Clifton-Bligh RJ. Immunohistochemistry for SDHB triages genetic testing of SDHB, SDHC, and SDHD in paraganglioma-pheochromocytoma syndromes. Hum Pathol. 2010;41(6):805–14.

    CAS  PubMed  Google Scholar 

  293. Biller-Andorno N, Jüni P. Abolishing Mammography Screening Programs? A view from the Swiss Medical Board. N Engl J Med. 2014;370(21):1965–7.

    PubMed  Google Scholar 

  294. Miller AB, Wall C, Baines CJ, Sun P, To T, Narod SA. Twenty five year follow-up for breast cancer incidence and mortality of the Canadian National Breast Screening Study: randomised screening trial. 2014 Feb 11;348:g366.

    Google Scholar 

  295. Mannelli M, Dralle H, Lenders JW. Perioperative management of pheochromocytoma/paraganglioma: is there a state of the art? Horm Metab Res. 2012;44(5):373–8.

    CAS  PubMed  Google Scholar 

  296. Koch CA, Gimm O, Vortmeyer AO, Al-Ali HK, Lamesch P, Ott R, Kluge R, Bierbach U, Tannapfel A. Does the expression of c-kit (CD117) in neuroendocrine tumors represent a target for therapy? Ann N Y Acad Sci. 2006;1073:517–26.

    CAS  PubMed  Google Scholar 

  297. Parenti G, Zampetti B, Rapizzi E, Ercolino T, Giachè V, Mannelli M. Updated and new perspectives on diagnosis, prognosis, and therapy of malignant pheochromocytoma/paraganglioma. J Oncol. 2012;2012:872713.

    PubMed Central  PubMed  Google Scholar 

  298. Jimenez C, Rohren E, Habra MA, Rich T, Jimenez P, Ayala-Ramirez M, Baudin E. Current and future treatments for malignant pheochromocytoma and sympathetic paraganglioma. Curr Oncol Rep. 2013;15(4):356–71.

    PubMed  Google Scholar 

  299. Dupin C, Lang P, Dessard-Diana B, Simon JM, Cuenca X, Mazeron JJ, Feuvret L. Treatment of head and neck paragangliomas with external beam radiation therapy. Int J Radiat Oncol Biol Phys. 2014;89(2):353–9.

    PubMed  Google Scholar 

Download references

Acknowledgment

We wish to thank Prof. Graeme Eisenhofer, PhD, University of Dresden, Germany, for insightful comments on this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian A. Koch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koch, C., Pamporaki, C., Kantorovich, V. (2015). Endocrine Hypertension and Chronic Kidney Disease. In: Weir, M., Lerma, E. (eds) Chronic Kidney Disease and Hypertension. Clinical Hypertension and Vascular Diseases. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1982-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1982-6_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1981-9

  • Online ISBN: 978-1-4939-1982-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics