Skip to main content

Transforming Growth Factor: β3 Regulates Cell Metabolism in Corneal Keratocytes and Fibroblasts

  • Chapter
  • First Online:
Studies on the Cornea and Lens

Abstract

Corneal keratocytes (HCKs) are specialized cells that reside in the corneal stroma, the largest layer of the human cornea. HCKs play a major role in corneal transparency and orchestrate corneal wound healing upon injury. Following an injury to the cornea HCKs adjacent to the wound undergo apoptosis and HCKs outside the wound area are activated, and they assume the role of remodeling the damaged stroma. Once activated the cells are termed fibroblasts (HCF). One of the key factors of this activation is thought to be transforming growth factor-beta (TGF-β). Five TGF-β (-β1,-β2,-β3,-β4, and -β5) have been identified and three (-β1,-β2, and -β3) are found in humans. We have recently identified TGF-β3 as a growth factor that can reduce or rescue corneal fibrosis in vitro. In this chapter, we present evidence that TGF-β3 plays a major role in regulating the metabolism of both HCKs and HCFs in vitro. We investigated both a conventional monolayer 2D system and a 3D self-assembled extracellular matrix (ECM) model. We targeted a total of 256 endogenous water-soluble metabolites by LC-MS/MS of which more than 60 were significantly regulated between different groups. These findings are expected to help achieve a better understanding of the specific and redundant functions of these metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ECM:

Extracellular matrix

GNG:

Glucogenesis

HCF:

Human corneal fibroblasts

HCK:

Human corneal keratocytes

TCA:

Tricarboxylic acid cycle

TGF-β:

Transforming growth factor-beta

References

  1. Patel SV, McLaren JW, Hodge DO, Bourne WM. Normal human keratocyte density and corneal thickness measurement by using confocal microscopy in vivo. Invest Ophthalmol Vis Sci. 2001;42(2):333–9.

    CAS  PubMed  Google Scholar 

  2. Reinstein DZ, Archer TJ, Gobbe M, Silverman RH, Coleman DJ. Stromal thickness in the normal cornea: three-dimensional display with artemis very high-frequency digital ultrasound. J Refract Surg. 2009;25(9):776–86.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Maurice DM. The structure and transparency of the cornea. J Physiol. 1957;136(2):263–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Muller LJ, Pels E, Schurmans LR, Vrensen GF. A new three-dimensional model of the organization of proteoglycans and collagen fibrils in the human corneal stroma. Exp Eye Res. 2004;78(3):493–501.

    Article  CAS  PubMed  Google Scholar 

  5. Shah M, Foreman DM, Ferguson MW. Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci. 1995;108(Pt 3):985–1002.

    CAS  PubMed  Google Scholar 

  6. Karamichos D, Hutcheon AE, Zieske JD. Transforming growth factor-beta3 regulates assembly of a non-fibrotic matrix in a 3D corneal model. J Tissue Eng Regen Med. 2011;5(8):e228–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Karamichos D, Rich CB, Zareian R, Hutcheon AE, Ruberti JW, Trinkaus-Randall V, et al. TGF-beta3 stimulates stromal matrix assembly by human corneal keratocyte-like cells. Invest Ophthalmol Vis Sci. 2013;54(10):6612–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev. 2007;26(1):51–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Rochfort S. Metabolomics reviewed: a new “omics” platform technology for systems biology and implications for natural products research. J Nat Prod. 2005;68(12):1813–20.

    Article  CAS  PubMed  Google Scholar 

  10. Greiner JV, Kopp SJ, Glonek T. Phosphorus nuclear magnetic resonance and ocular metabolism. Surv Ophthalmol. 1985;30(3):189–202.

    Article  CAS  PubMed  Google Scholar 

  11. Risa O, Saether O, Lofgren S, Soderberg PG, Krane J, Midelfart A. Metabolic changes in rat lens after in vivo exposure to ultraviolet irradiation: measurements by high resolution MAS 1H NMR spectroscopy. Invest Ophthalmol Vis Sci. 2004;45(6):1916–21.

    Article  PubMed  Google Scholar 

  12. Fu H, Khan A, Coe D, Zaher S, Chai JG, Kropf P, et al. Arginine depletion as a mechanism for the immune privilege of corneal allografts. Eur J Immunol. 2011;41(10):2997–3005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Klyce SD. Stromal lactate accumulation can account for corneal oedema osmotically following epithelial hypoxia in the rabbit. J Physiol. 1981;321:49–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Nguyen TT, Bonanno JA. Lactate-H+ transport is a significant component of the in vivo corneal endothelial pump. Invest Ophthalmol Vis Sci. 2012;53(4):2020–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Guo X, Hutcheon AE, Melotti SA, Zieske JD, Trinkaus-Randall V, Ruberti JW. Morphologic characterization of organized extracellular matrix deposition by ascorbic acid-stimulated human corneal fibroblasts. Invest Ophthalmol Vis Sci. 2007;48(9):4050–60.

    Article  PubMed  Google Scholar 

  16. Karamichos D, Guo XQ, Hutcheon AE, Zieske JD. Human corneal fibrosis: an in vitro model. Invest Ophthalmol Vis Sci. 2010;51(3):1382–8.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Webhofer C, Gormanns P, Reckow S, Lebar M, Maccarrone G, Ludwig T, et al. Proteomic and metabolomic profiling reveals time-dependent changes in hippocampal metabolism upon paroxetine treatment and biomarker candidates. J Psychiatr Res. 2013;47(3):289–98.

    Article  PubMed  Google Scholar 

  18. Yuan M, Breitkopf SB, Yang X, Asara JM. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat Protoc. 2012;7(5):872–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS. MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res. 2012;40(Web Server issue):W127–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011;13(5):517–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Tanaka H, Nishida T. Butyrate stimulates fibronectin synthesis in cultured rabbit cornea. J Cell Physiol. 1985;123(2):191–6.

    Article  CAS  PubMed  Google Scholar 

  22. Lee VH, Chien DS, Sasaki H. Ocular ketone reductase distribution and its role in the metabolism of ocularly applied levobunolol in the pigmented rabbit. J Pharmacol Exp Ther. 1988;246(3):871–8.

    CAS  PubMed  Google Scholar 

  23. Tsai CP, Lin PY, Lee NC, Niu DM, Lee SM, Hsu WM. Corneal lesion as the initial manifestation of tyrosinemia type II. J Chin Med Assoc. 2006;69(6):286–8.

    Article  PubMed  Google Scholar 

  24. Mahmoud SS. Corneal toxicity associated with ammonia exposure investigated by Fourier transform infrared spectroscopy. Biophys Rev Lett. 2009;04(4):331.

    Article  CAS  Google Scholar 

  25. Nelson DL, Cox MM. Lehninger principles of biochemistry. New York: Worth Publishers; 2000. p. 724.

    Google Scholar 

  26. Young JW. Gluconeogenesis in cattle: significance and methodology. J Dairy Sci. 1977;60:1–15.

    Article  CAS  PubMed  Google Scholar 

  27. George SJ, Bernard AW, Albers RW, Stephen FK, Michael UD, editors. Basic neurochemistry. 6th ed. Philadelphia: Lippincott-Raven; 1999.

    Google Scholar 

  28. Lowenstein JM. Methods in enzymology, volume 13: citric acid cycle. Boston: Academic; 1969.

    Google Scholar 

  29. Krebs HA, Weitzman PDJ. Krebs’ citric acid cycle: half a century and still turning. London: Biochemical Society; 1987.

    Google Scholar 

  30. Lane N. Life ascending: the ten great inventions of evolution. New York: W. W. Norton & Co; 2009.

    Google Scholar 

  31. Monty K, Matthew PS, Matsudaira PT, Lodish HF, Darnell JE, Lawrence Z, et al. Molecular cell biology. 5th ed. San Francisco: W. H. Freeman; 2003. p. 973.

    Google Scholar 

  32. Lehninger AL, Nelson DL, Cox MM. Principles of biochemistry. 5th ed. New York, NY: W.H. Freeman and Company; 2008. p. 528.

    Google Scholar 

  33. Schutte E, Schulz I, Reim M. Lactate and pyruvate levels in the aqueous humor and in the cornea after cyclodiathermy. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1972;185(4):325–30.

    Article  CAS  PubMed  Google Scholar 

  34. Lamers Y, O’Rourke B, Gilbert LR, Keeling C, Matthews DE, Stacpoole PW, et al. Vitamin B-6 restriction tends to reduce the red blood cell glutathione synthesis rate without affecting red blood cell or plasma glutathione concentrations in healthy men and women. Am J Clin Nutr. 2009;90(2):336–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Lima CP, Davis SR, Mackey AD, Scheer JB, Williamson J, Gregory 3rd JF. Vitamin B-6 deficiency suppresses the hepatic transsulfuration pathway but increases glutathione concentration in rats fed AIN-76A or AIN-93G diets. J Nutr. 2006;136(8):2141–7.

    CAS  PubMed  Google Scholar 

  36. Hsu JM, Buddemeyer E, Chow BF. Role of pyridoxine in glutathione metabolism. Biochem J. 1964;90(1):60–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Davis SR, Quinlivan EP, Stacpoole PW, Gregory 3rd JF. Plasma glutathione and cystathionine concentrations are elevated but cysteine flux is unchanged by dietary vitamin B-6 restriction in young men and women. J Nutr. 2006;136(2):373–8.

    CAS  PubMed  Google Scholar 

  38. Robertson DG, Watkins PB, Reily MD. Metabolomics in toxicology: preclinical and clinical applications. Toxicol Sci. 2011;120 Suppl 1:S146–70.

    Article  CAS  PubMed  Google Scholar 

  39. Chan AA, Hertsenberg AJ, Funderburgh ML, Mann MM, Du Y, Davoli KA, et al. Differentiation of human embryonic stem cells into cells with corneal keratocyte phenotype. PLoS One. 2013;8(2):e56831.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Petroll WM, Lakshman N, Ma L. Experimental models for investigating intra-stromal migration of corneal keratocytes, fibroblasts and myofibroblasts. J Funct Biomater. 2012;3(1):183–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Jester JV, Budge A, Fisher S, Huang J. Corneal keratocytes: phenotypic and species differences in abundant protein expression and in vitro light-scattering. Invest Ophthalmol Vis Sci. 2005;46(7):2369–78.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Khaw PT, Shah P, Elkington AR. Injury to the eye. BMJ. 2004;328(7430):36–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Netto MV, Mohan RR, Ambrosio Jr R, Hutcheon AE, Zieske JD, Wilson SE. Wound healing in the cornea: a review of refractive surgery complications and new prospects for therapy. Cornea. 2005;24(5):509–22.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health Grant EY023568 (D.K) and EY020886 (DK and JDZ)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Karamichos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Karamichos, D., Asara, J.M., Zieske, J.D. (2015). Transforming Growth Factor: β3 Regulates Cell Metabolism in Corneal Keratocytes and Fibroblasts. In: Babizhayev, M., Li, DC., Kasus-Jacobi, A., Žorić, L., Alió, J. (eds) Studies on the Cornea and Lens. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1935-2_5

Download citation

Publish with us

Policies and ethics