Skip to main content

Polypharmacy and Drug Interaction

  • Chapter
  • First Online:
Treatment of Chronic Pain by Medical Approaches

Abstract

In days past, a basic understanding of a drug’s mechanism of action was sufficient for the purpose of prescribing a medication to treat the vast majority of patients and their conditions. Those days are long gone with 48 % of Medicare beneficiaries over the age of 65 having three or more chronic medical conditions and 21 % having five or more of these conditions (Boyd et al., JAMA. 294(6):716–24, 2005). It has been estimated that the likelihood of a drug interaction in a patient taking only two different medications is only 6 %, whereas when the number of medications increases to ten, the likelihood of drug interaction increases to 100 % (Lin, Can Alzheimer Dis Rev. 10–4, 2003). With this virtual certainty of frequently dealing with drug interaction, a physician must have a solid understanding of polypharmacy along with drug interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boyd C, et al. Clinical practice guidelines and quality of care for older patients with multiple comorbid diseases, implications for pay for performance. JAMA. 2005;294(6):716–24.

    Article  CAS  PubMed  Google Scholar 

  2. Lin P. Drug interactions and polypharmacy in the elderly. Can Alzheimer Dis Rev. 2003;10–4.

    Google Scholar 

  3. Gilron I. The role of anticonvulsant drugs in postoperative pain management: a bench-to-bedside perspective. Can J Anaesth. 2006;53:562–71.

    Article  PubMed  Google Scholar 

  4. Misra UK, Kalita J, Rathore C. Phenytoin and carbamazepine cross reactivity: report of a case and review of literature. Postgrad Med J. 2003;79:703–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Wadzinski J, Franks R, Roane D, Bayard M. Valproate-associated hyperammonemic encephalopathy. J Am Board Fam Med. 2007;20:499–502.

    Article  PubMed  Google Scholar 

  6. McNamara J. Pharmacotherapies of the epilepsies. Goodman & Gilman’s the pharmacological basis of therapeutics. 11th ed. USA: McGraw Hill; 2006.

    Google Scholar 

  7. Anderson G. A mechanistic approach to antiepileptic drug interactions. Ann Pharmacother. 1998;32:554–63.

    Article  CAS  PubMed  Google Scholar 

  8. Crawford P. Interactions between antiepileptic drugs and hormonal contraception. CNS Drugs. 2002;16(4):263–72.

    Article  CAS  PubMed  Google Scholar 

  9. Garnett WR. Clinical pharmacology of topiramate: a review. Epilepsia. 2000;41:S61–5.

    Article  CAS  PubMed  Google Scholar 

  10. Browne TR, Szabo GK, Leppik IE, Josephs E, Paz J, Baltes E, Jensen CM. Absence of pharmacokinetic drug interaction of levetiracetam with phenytoin in patients with epilepsy determined by new technique. J Clin Pharmacol. 2000;40:590.

    Article  CAS  PubMed  Google Scholar 

  11. Elsevier Health. MD consult web site. Drugs. 2010. Available at: http://www.mdconsult.com/das/pharm/lookup/134025550-4?type=alldrugs. Accessed June 2010.

  12. Jensen T. Anticonvulsants in neuropathic pain: rationale and clinical evidence. Eur J Pain. 2002;6:A61–8.

    Article  Google Scholar 

  13. Kwan P, Sills GJ, Brodie MJ. The mechanisms of action of commonly used antiepileptic drugs. Pharmacol Ther. 2001;90:21–34.

    Article  CAS  PubMed  Google Scholar 

  14. Kutscher EC, Alexander B. A review of the drug interactions with psychiatric medicines for the pharmacy practitioner. J Pharm Pract. 2007;20(4):327–33.

    Article  Google Scholar 

  15. Wadzinski J, Franks R, Roane D, Bayard M. Valproate-associated hyperammonemic encephalopathy. JABFM. 2007;20(5):499–502.

    Article  PubMed  Google Scholar 

  16. Mattson RH, Cramer JA, Williamson PD, Novelly RA. Valproic acid in epilepsy: clinical and pharmacological effects. Ann Neurol. 1978;3:20–5.

    Article  CAS  PubMed  Google Scholar 

  17. Tohen M, Castillo J, Baldessarini RJ, Zarate Jr C, Kando JC. Blood dyscrasias with carbamazepine and valproate: a pharmacoepidemiological study of 2,228 patients at risk. Am J Psychiatry. 1995;152(3):413–8.

    CAS  PubMed  Google Scholar 

  18. Lexi-Comp OnlineTM, Pediatric Lexi-Drugs OnlineTM, Hudson, Ohio: Lexi-Comp, Inc. 2007; 2010.

    Google Scholar 

  19. Ambrosio A, Soares-da-Silva P, Carvalho CM, Carvalho AP. Mechanisms of action of carbamazepine and its derivatives, oxcarbazepine, BIA 2-093, and BIA 2-024. Neurochem Res. 2002;27:121–30.

    Article  CAS  PubMed  Google Scholar 

  20. Baker GB, Fang J, Sinha S, Coutis RT. Metabolic drug interactions with selective serotonin reuptake inhibitor (SSRI) antidepressants. Neurosci Biobehav Rev. 1998;22(2):325–33.

    Article  CAS  PubMed  Google Scholar 

  21. Perucca E. Clinically relevant drug interactions with antiepileptic drugs. Br J Clin Pharmacol. 2005;61:246–55.

    Article  PubMed Central  Google Scholar 

  22. Kumar P, et al. Effect of anticonvulsant drugs on lipid profile in epileptic patients. Int J Neurol. 2004;3(1).

    Google Scholar 

  23. Basow DS, editor. UpToDate web site. 2010. Available at: http://utdol.com/online/content/search.do. Accessed June 2010.

  24. Kalis MM, Huff NA. Oxcarbazepine, an antiepileptic agent. Clin Ther. 2001;23(5):680–700.

    Article  CAS  PubMed  Google Scholar 

  25. Kong VKF, Irwin MG. Gabapentin: a multimodal perioperative drug? Br J Anesth. 2007;99(6):775–86.

    Article  CAS  Google Scholar 

  26. Hurley R, et al. Gabapentin and pregabalin can interact synergistically with naproxen to produce anti-hyperalgesia. Anesthesiology. 2002;97(5):1263–73.

    Article  CAS  PubMed  Google Scholar 

  27. Gilron I, et al. Morphine, gabapentin, or their combination for neuropathic pain. N Engl J Med. 2005;352:1324–34.

    Article  CAS  PubMed  Google Scholar 

  28. Stacey BR, Swift JN. Pregabalin for neuropathic pain based recent clinical trials. Curr Pain Headache Rep. 2006;10:179–84.

    Article  PubMed  Google Scholar 

  29. Randinitis EJ, et al. Pharmacokinetics of pregabalin in subjects with various degrees of renal function. J Clin Pharmacol. 2003;43:277–83.

    Article  CAS  PubMed  Google Scholar 

  30. Hachad H, Ragueneau-Majlessi I, Levy RH. New antiepileptic drugs: review on drug interactions. Ther Drug Monit. 2002;24:91–103.

    Article  CAS  PubMed  Google Scholar 

  31. Welsh BJ, Graybeal D, Moe OW, et al. Biochemical and stone-risk profiles with topiramate treatment. Am J Kidney Dis. 2006;48(4):555–63.

    Article  Google Scholar 

  32. Remick RA. Diagnosis and management of depression in primary care: a clinical update and review. CMAJ. 2002;167(11):1253–60.

    PubMed Central  PubMed  Google Scholar 

  33. Elliot R. Pharmacokinetic drug interactions of new antidepressants: a review of the effects on the metabolism of other drugs. Mayo Clin Proc. 1997;72:835–47.

    Article  Google Scholar 

  34. Ament PW, Bertolino JG, Liszewski JL. Clinically significant drug interactions. Am Fam Physician. 2000;61:1745–54.

    CAS  PubMed  Google Scholar 

  35. Carlat D. Laboratory monitoring when prescribing psychotropics. Carlat Psychiatry Rep. 2007;5(8):1, 3, 6, 8.

    Google Scholar 

  36. Liu BA, Mittmann N, Knowles SR, Shear NH. Hyponatremia and the syndrome of inappropriate secretion of antidiuretic hormone associated with the use of selective serotonin reuptake inhibitors: review of spontaneous reports. CMAJ. 1996;155:519–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Christodoulou C, et al. Extrapyramidal side effects and suicidal ideation under fluoxetine treatment: a case report. Ann Gen Psychiatry. 2010;9(5):1–3.

    Google Scholar 

  38. Warden S, et al. Inhibition of the serotonin (5-hydroxytryptamine) transporter reduces bone growth accrual during growth. Endocrinology. 2005;146:685–93.

    Article  CAS  PubMed  Google Scholar 

  39. The Merck Manual. Unbound Medicine, Inc.; 2010.

    Google Scholar 

  40. Herrlin K, et al. Metabolism of citalopram enantiomers in CYP2C19/CYP2D6 phenotyped panels of healthy Swedes. Br J Clin Pharmacol. 2003;56:415–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Lyengar S, Webster AA, Hemrick-Luecke SK, Xu JY, Simmons RMA. Efficacy of duloxetine, a potent and balanced serotonin-norepinephrine reuptake inhibitor in persistent pain models in rats. JPET. 2004;311(2):576–84.

    Article  Google Scholar 

  42. Barkin RL, Fawcett J. The management challenges of chronic pain: the role of antidepressants. Am J Ther. 2000;7:31–47.

    Article  CAS  PubMed  Google Scholar 

  43. Gillman PK. Monoamine oxidase inhibitors, opioid analgesics and serotonin toxicity. Br J Anaesth. 2005;95:434–41.

    Article  CAS  PubMed  Google Scholar 

  44. Troy SM, Schultz RW, Parker VD, Chiang ST, Blum RA. The effect of renal disease on the disposition of venlafaxine. Clin Pharmacol Ther. 1994;56:14–21.

    Article  CAS  PubMed  Google Scholar 

  45. Petroianu G, Schmitt A. First line symptomatic therapy for painful diabetic neuropathy: a tricyclic antidepressant or gabapentin? Int J Diab Metab. 2002;10:1–13.

    Google Scholar 

  46. Gillman PK. Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol. 2007;151:737–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Oleson OV, Linnet K. Hydroxylation and demethylation of the tricyclic antidepressant nortriptyline by cDNA-expressed human cytochrome P-450 isozymes. Drug Metab Dispos. 1997;25(6):740–4.

    Google Scholar 

  48. Barkin RL, Barkin D. Pharmacologic management of acute and chronic pain: focus on drug interactions and patient specific pharmacotherapeutic selection. South Med J. 2001;94(8):756–70.

    Article  CAS  PubMed  Google Scholar 

  49. Harrigan R, Brady W. ECG abnormalities in tricyclic antidepressant ingestion. Am J Emerg Med. 1999;17:387–93.

    Article  CAS  PubMed  Google Scholar 

  50. Wiechers I, Smith F, Stern T. A guide to the judicious use of laboratory tests and diagnostic procedures in psychiatric practice. Psychiatric Times. 2010.

    Google Scholar 

  51. Eisenach JC, De Kock M, Klimscha W. Alpha sub 2 -adrenergic agonists for regional anesthesia: a clinical review of clonidine (1984–1995). Anesthesiology. 1996;85(3):655–74.

    Article  CAS  PubMed  Google Scholar 

  52. Youdim MBH, Edmondson D, Tipton KF. The therapeutic potential of monoamine oxidase inhibitors. Nat Rev. 2006;7:295–309.

    Article  CAS  Google Scholar 

  53. Furlan AD, Sandoval JA, Mailis-Gagnon A, Tunks E. Opioid for chronic noncancer pain: a meta-analysis of effectiveness and side effects. CMAJ. 2006;174(11):1589–94.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Ballantyne JC, Mao J. Opioid therapy for chronic pain. N Engl J Med. 2003;349:1943–53.

    Article  CAS  PubMed  Google Scholar 

  55. White S, Wong S. Standards of laboratory practice: analgesic drug monitoring. Clin Chem. 1998;45(5):1110–23.

    Google Scholar 

  56. Caraco Y, Tateishi T, Guengerich FP, Wood AJJ. Microsomal codeine n-demethylation: cosegregation with cytochrome P4503A4 activity. Drug Metab Dispos. 1996;24(7):761–4.

    CAS  PubMed  Google Scholar 

  57. Gallego AO, Baron MG, Arranz EE. Oxycodone: a pharmacological and clinical review. Clin Transl Oncol. 2007;9:298–307.

    Article  CAS  Google Scholar 

  58. Coffman BL, King CD, Rios GR, Tephly TR. The glucuronidation of opioid, other xenobiotics, and androgens by human UGT2B7Y(268) and UGT2B7H(268). Drug Metab Dispos. 1998;26(1):73–7.

    CAS  PubMed  Google Scholar 

  59. Miser AW, Narang PK, Dothage JA, Young RC, Sindelar W, Miser JS. Transdermal fentanyl for pain control in patients with cancer. Pain. 1989;39:15–21.

    Article  Google Scholar 

  60. Heiskanen T, Matzke S, Haakana S, Gergov M, Vuori E, Kalso E. Transdermal fentanyl in cachectic cancer patients. Pain. 2009;144:218–22.

    Article  CAS  PubMed  Google Scholar 

  61. Feierman DE, Lasker JM. Metabolism of fentanyl, a synthetic opioid analgesic, by human liver microsomes. Drug Metab Dispos. 1996;24(9):932–9.

    CAS  PubMed  Google Scholar 

  62. Pergolizzi J, et al. Opioids and the management of chronic severe pain in the elderly: consensus statement of an international expert panel with focus on the six clinically most often used world health organization step III opioids (buprenorphine, fentanyl, hydromorphone, methadone, morphine, oxycodone). Pain Pract. 2008;8(4):287–313.

    Article  PubMed  Google Scholar 

  63. Lalovic B, Phillips B, Risler LL, Howald W, Shen DD. Quantitative contribution of CYP2D6 and CYP3A to oxycodone metabolism in human liver and intestinal microsomes. Drug Metab Dispos. 2004;32(4):447–54.

    Article  CAS  PubMed  Google Scholar 

  64. Ripamonti C, Zecca E, Bruera E. An update on the clinical use of methadone for cancer pain. Pain. 1997;70:109–15.

    Article  CAS  PubMed  Google Scholar 

  65. Andersen S, Dickenson AH, Kohn M, Reeve A, Rahman W, Ebert B. The opioid ketobemidone has a NMDA blocking effect. Pain. 1996;67:369–74.

    Article  CAS  PubMed  Google Scholar 

  66. Toombs J, Kral L. Methadone treatments for pain states. Am Fam Physician. 2005;71:1353–8.

    PubMed  Google Scholar 

  67. Wang J, DeVane CL. Involvement of CYP3A4, CYP2C8, and CYP2D6 in the metabolism of (R)- and (S)-methadone in vitro. Pain. 2003;31(6):742–7.

    CAS  Google Scholar 

  68. Martell BA, Arnsten JH, Ray B, et al. The impact of methadone induction on cardiac conduction in opiate users. Ann Intern Med. 2003;139(2):154–5.

    Article  PubMed  Google Scholar 

  69. Klotz U. Tramadol – the impact of its pharmacokinetic and pharmacodynamic properties on the clinical management of pain. Arzneim Forsch Drug Res. 2003;53(10):681–7.

    CAS  Google Scholar 

  70. Grond S, Sablotzki A. Clinical pharmacology of tramadol. Clin Pharmacokinet. 2004;43(13):879–923.

    Article  CAS  PubMed  Google Scholar 

  71. Sporer KA. Buprenorphine: a primer for emergency physicians. Ann Emerg Med. 2004;43:580–4.

    Article  PubMed  Google Scholar 

  72. Picard N, Cresteil T, Djebli N, Marquet P. In vitro metabolism study of buprenorphine: evidence for new metabolic pathways. Drug Metab Dispos. 2005;33:689–95.

    Article  CAS  PubMed  Google Scholar 

  73. Taikato M, et al. What every psychiatrist should know about buprenorphine in substance misuse. Psychiatr Bull. 2005;29:225–7.

    Article  Google Scholar 

  74. Addolorato G, et al. Effectiveness and safety of baclofen for maintenance of alcohol abstinence in alcohol-dependent patients with liver cirrhosis: randomized, double-blind controlled study. Lancet. 2007;370:1915–22.

    Article  CAS  PubMed  Google Scholar 

  75. Granfors MT, et al. Fluvoxamine drastically increases concentrations and effects of tizanidine: a potentially hazardous interaction. Clin Pharmacol Ther. 2004;75:331–41.

    Article  CAS  PubMed  Google Scholar 

  76. Abraham BK, Adithan C. Genetic polymorphism of CYP2D6. Indian J Pharmacol. 2001;33:147–69.

    CAS  Google Scholar 

  77. Elliot JA. α2-Agonists. In: Smith HS, editor. Current therapy in pain. Philadelphia: Saunders; 2009. p. 476–9. Print.

    Chapter  Google Scholar 

  78. Weigert G, Resch H, Luksch A, et al. Intravenous administration of clonidine reduces intraocular pressure and alters ocular blood flow. Br J Ophthalmol. 2007;91:1354–8.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Toth P, Urtis J. Commonly used muscle relaxant therapies for acute low back pain: a review of carisoprodol, cyclobenzaprine hydrochloride, and metaxalone. Clin Ther. 2004;26(9):1355–67.

    Article  CAS  PubMed  Google Scholar 

  80. Ingelman-Sundberg M, Oscarson M, McLellan R. Polymorphic human cytochrome P450 enzymes: an opportunity for individualized drug treatment. Trends Pharmacol Sci. 1999;20(8):342–9.

    Article  CAS  PubMed  Google Scholar 

  81. Phillips K, et al. Potential role of pharmacogenomics in reducing adverse drug reactions: a systematic review. JAMA. 2001;286(18):2270–9.

    Article  CAS  PubMed  Google Scholar 

  82. AmpliChip CYP450 test package insert. Roche Molecular Systems, Inc.; 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Steel M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 American Academy of Pain Medicine

About this chapter

Cite this chapter

Steel, C.A., Eckert, J. (2015). Polypharmacy and Drug Interaction. In: Deer, T., Leong, M., Gordin, V. (eds) Treatment of Chronic Pain by Medical Approaches. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1818-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1818-8_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1817-1

  • Online ISBN: 978-1-4939-1818-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics