Skip to main content

Biological Differences Between Native and Cultured Mesenchymal Stem Cells: Implications for Therapies

  • Protocol
  • First Online:
Book cover Stem Cell Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1235))

Abstract

We describe the current knowledge of the surface marker phenotype of native bone marrow mesenchymal stem/stromal cells (MSCs) in humans and in mouse models, highlighting similarities in the MSC marker “signature” between the two species. The chapter proceeds to discuss the published literature pertaining to native MSC topography and their interactions with hematopoietic stem cells and their progeny, as well as with blood vessels and nerve endings. Additionally, the chapter describes phenotypic and functional “drifts” that occur in MSC preparations as they are taken out of their native bone marrow microenvironment and induced to proliferate in vitro (in the presence of animal or human serum). We propose that the understanding of the biology of MSCs in their native niches in the bone marrow could lead to future developments in the treatment of hematological diseases such as multiple myeloma. Additionally, this knowledge would assist in the development of more “natural” MSC culture conditions, best preserving MSC functionality including their homing potential in order to optimize MSC transplantation in the context of graft-versus-host and other diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bianco P, Cao X, Frenette PS et al (2013) The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med 19:35–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Pittenger MF (2013) MSCs: science and trials. Nat Med 19:811–811

    Article  CAS  PubMed  Google Scholar 

  3. Friedens AJ, Deriglas UF, Kulagina NN et al (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by in vitro colony assay method. Exp Hematol 2:83–92

    Google Scholar 

  4. Friedenstein AJ, Chailakhyan RK, Gerasimov UV (1987) Bone-marrow osteogenic stem-cells—in vitro cultivation and transplantation in diffusion-chambers. Cell Tissue Kinet 20:263–272

    CAS  PubMed  Google Scholar 

  5. Owen M, Friedenstein AJ (1988) Stromal stem-cells—marrow-derived osteogenic precursors. Ciba Found Symp 136:42–60

    CAS  PubMed  Google Scholar 

  6. Friedenstein AJ (1976) Precursor cells of mechanocytes. Int Rev Cytol 47:327–359

    Article  CAS  PubMed  Google Scholar 

  7. Zhou YF, Bosch-Marce M, Okuyama H et al (2006) Spontaneous transformation of cultured mouse bone marrow-derived stromal cells. Cancer Res 66:10849–10854

    Article  CAS  PubMed  Google Scholar 

  8. Miura M, Miura Y, Padilla-Nash HM et al (2006) Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 24:1095–1103

    Article  PubMed  Google Scholar 

  9. Kuznetsov SA, Friedenstein AJ, Robey PG (1997) Factors required for bone marrow stromal fibroblast colony formation in vitro. Br J Haematol 97:561–570

    Article  CAS  PubMed  Google Scholar 

  10. Hirata J, Kaneko S, Nishimura J et al (1985) Effect of platelet-derived growth-factor and bone marrow-conditioned medium on the proliferation of human-bone marrow-derived fibroblastoid colony-forming cells. Acta Haematol 74:189–194

    Article  CAS  PubMed  Google Scholar 

  11. Gronthos S, Simmons PJ (1995) The growth-factor requirements of stro-1-positive human bone-marrow stromal precursors under serum-deprived conditions in-vitro. Blood 85:929–940

    CAS  PubMed  Google Scholar 

  12. Dhillon RS, Schwarz EM, Maloney MD (2012) Platelet-rich plasma therapy—future or trend? Arthritis Res Ther 14:219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Doucet C, Ernou I, Zhang YZ et al (2005) Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications. J Cell Physiol 205:228–236

    Article  CAS  PubMed  Google Scholar 

  14. Schwartz RE, Reyes M, Koodie L et al (2002) Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest 109:1291–1302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ogura N, Kawada M, Chang W-J et al (2004) Differentiation of the human mesenchymal stem cells derived from bone marrow and enhancement of cell attachment by fibronectin. J Oral Sci 46:207–213

    Article  CAS  PubMed  Google Scholar 

  16. Peister A, Mellad JA, Larson BL et al (2004) Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 103:1662–1668

    Article  CAS  PubMed  Google Scholar 

  17. Krishinappa V, Boregowda SV, Phinney DG (2013) The peculiar biology of mouse mesenchymal stromal cells-oxygen is the key. Cytotherapy 15:536–541

    Article  Google Scholar 

  18. Baddoo M, Hill K, Wilkinson R et al (2003) Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem 89:1235–1249

    Article  CAS  PubMed  Google Scholar 

  19. Phinney DG, Kopen G, Isaacson RL et al (1999) Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biochem 72:570–585

    Article  CAS  PubMed  Google Scholar 

  20. Xu S, De Becker A, Van Camp B et al (2010) An improved harvest and in vitro expansion protocol for murine bone marrow-derived mesenchymal stem cells. J Biomed Biotechnol. doi:10.1155/2010/105940

    Google Scholar 

  21. Gronthos S, Zannettino ACW, Hay SJ et al (2003) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116:1827–1835

    Article  CAS  PubMed  Google Scholar 

  22. Tormin A, Li O, Brune JC et al (2011) CD146 expression on primary non-hematopoietic bone marrow stem cells correlates to in situ localization. Blood 117:5067–5077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Houlihan DD, Mabuchi Y, Morikawa S et al (2012) Isolation of mouse mesenchymal stem cells on the basis of expression of Sca-1 and PDGFR-alpha. Nat Protoc 7:2103–2111

    Article  CAS  PubMed  Google Scholar 

  24. Mendez-Ferrer S, Michurina TV, Ferraro F et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495:231–235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Komada Y, Yamane T, Kadota D et al (2012) Origins and properties of dental, thymic, and bone marrow mesenchymal cells and their stem cells. PLoS One 7:e46436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Pinho S, Lacombe J, Hanoun M et al (2013) PDGFR alpha and CD51 mark human Nestin(+) sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exp Med 210:1351–1367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Simmons PJ, Torok SB (1991) Identification of stromal cell precursors in human bone-marrow by a novel monoclonal-antibody, Stro-1. Blood 78:55–62

    CAS  PubMed  Google Scholar 

  29. Gronthos S, Graves SE, Ohta S et al (1994) The Stro-1(+) fraction of adult human bone-marrow contains the osteogenic precursors. Blood 84:4164–4173

    CAS  PubMed  Google Scholar 

  30. Quirici N, Soligo D, Bossolasco P et al (2002) Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp Hematol 30:783–791

    Article  CAS  PubMed  Google Scholar 

  31. Jones EA, Kinsey SE, English A et al (2002) Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum 46:3349–3360

    Article  PubMed  Google Scholar 

  32. Rezaee F, Rellick SL, Piedimonte G et al (2010) Neurotrophins regulate bone marrow stromal cell IL-6 expression through the MAPK pathway. PLoS One 15:e9690

    Article  Google Scholar 

  33. Buhring H-J, Battula VL, Treml S et al (2007) Novel markers for the prospective isolation of human MSC. In: Kanz L, Weisel KC, Dick JE, Fibbe WE (Eds) Hematopoietic stem cells, vol 1106. Ann NY Acad Sci. pp 262–271

    Google Scholar 

  34. Battula VL, Treml S, Bareiss PM et al (2009) Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica 94:173–184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Churchman SM, Ponchel F, Boxall SA et al (2012) Transcriptional profile of native CD271+ multipotential stromal cells: evidence for multiple fates, with prominent osteogenic and Wnt pathway signaling activity. Arthritis Rheum 64:2632–2643

    Article  CAS  PubMed  Google Scholar 

  36. Qian H, Le Blanc K, Sigvardsson M (2012) Primary mesenchymal stem and progenitor cells from bone marrow lack expression of CD44. J Biol Chem 287:25795–25807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Hall SRR, Jiang Y, Leary E et al (2013) Identification and isolation of small CD44-negative mesenchymal stem/progenitor cells from human bone marrow using elutriation and polychromatic flow cytometry. Stem Cells Transl Med 2:567–578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Barry F, Murphy M (2013) Mesenchymal stem cells in joint disease and repair. Nat Rev Rheumatol 9:584–594

    Article  CAS  PubMed  Google Scholar 

  39. Krampera M, Galipeau J, Shi Y et al (2013) Immunological characterization of multipotent mesenchymal stromal cells—the International Society for Cellular Therapy (ISCT) working proposal. Cytotherapy 15:1054–1061

    Article  PubMed  Google Scholar 

  40. Kuçi Z, Seiberth J, Latifi-Pupovci H et al (2013) Clonal analysis of multipotent stromal cells derived from CD271+ bone marrow mononuclear cells: functional heterogeneity and different mechanisms of allosuppression. Haematologica 98:1609–1616

    Article  PubMed Central  PubMed  Google Scholar 

  41. Gronthos S, Chen SQ, Wang CY et al (2003) Telomerase accelerates osteogenesis of bone marrow stromal stem cells by upregulation of CBFA1, osterix, and osteocalcin. J Bone Miner Res 18:716–722

    Article  CAS  PubMed  Google Scholar 

  42. Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18:696–704

    Article  PubMed  Google Scholar 

  43. Buhring HJ, Treml S, Cerabona F et al (2009) Phenotypic characterization of distinct human bone marrow-derived MSC subsets. In: Kanz L, Weisel KC, Dick JE, Fibbe WE (Eds) Hematopoietic stem cells, vol 1176. Ann NY Acad Sci. pp 124–134

    Google Scholar 

  44. Jones E, English A, Churchman SM et al (2010) Large-scale extraction and characterization of CD271+ multipotential stromal cells from trabecular bone in health and osteoarthritis: implications for bone regeneration strategies based on uncultured or minimally cultured multipotential stromal cells. Arthritis Rheum 62:1944–1954

    Article  CAS  PubMed  Google Scholar 

  45. Maijenburg MW, Kleijer M, Vermeul K et al (2012) The composition of the mesenchymal stromal cell compartment in human bone marrow changes during development and aging. Haematologica 97:179–183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Veyrat-Masson R, Boiret-Dupre N, Rapatel C et al (2007) Mesenchymal content of fresh bone marrow: a proposed quality control method for cell therapy. Br J Haematol 139:312–320

    Article  PubMed  Google Scholar 

  47. Aslan H, Zilberman Y, Kandel L et al (2006) Osteogenic differentiation of noncultured immunoisolated bone marrow-derived CD105+ cells. Stem Cells 24:1728–1737

    Article  PubMed  Google Scholar 

  48. Boxall SA, Jones E (2012) Markers for characterization of bone marrow multipotential stromal cells. Stem Cells Int 2012:975871–975871

    Article  PubMed Central  PubMed  Google Scholar 

  49. Martinez C, Hofmann TJ, Marino R et al (2007) Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood 109:4245–4248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Gang EJ, Bosnakovski D, Figueiredo CA et al (2007) SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 109:1743–1751

    Article  CAS  PubMed  Google Scholar 

  51. Delorme B, Ringe J, Gallay N et al (2008) Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood 111:2631–2635

    Article  CAS  PubMed  Google Scholar 

  52. Harichandan A, Buehring H-J (2011) Prospective isolation of human MSC. Best Pract Res Clin Haematol 24:25–36

    Article  CAS  PubMed  Google Scholar 

  53. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  54. Morikawa S, Mabuchi Y, Kubota Y et al (2009) Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med 206:2483–2496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Ding L, Saunders TL, Enikolopov G et al (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481:457–465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Mendez-Ferrer S, Lucas D, Battista M et al (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452:442–444

    Article  CAS  PubMed  Google Scholar 

  57. Chan CKF, Lindau P, Jiang W et al (2013) Clonal precursor of bone, cartilage, and hematopoietic niche stromal cells. Proc Natl Acad Sci U S A 110:12643–12648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Tormin A, Brune JC, Olsson E et al (2009) Characterization of bone marrow-derived mesenchymal stromal cells (MSC) based on gene expression profiling of functionally defined MSC subsets. Cytotherapy 11:114–128

    Article  CAS  PubMed  Google Scholar 

  59. Miao D, Murant S, Scutt N et al (2004) Megakaryocyte-bone marrow stromal cell aggregates demonstrate increased colony formation and alkaline phosphatase expression in vitro. Tissue Eng 10:807–817

    Article  CAS  PubMed  Google Scholar 

  60. Blazsek I, Chagraoui J, Peault B (2000) Ontogenic emergence of the hematon, a morphogenetic stromal unit that supports multipotential hematopoietic progenitors in mouse bone marrow. Blood 96:3763–3771

    CAS  PubMed  Google Scholar 

  61. Castromalaspina H, Rabellino EM, Yen A et al (1981) Human megakaryocyte stimulation of proliferation of bone-marrow fibroblasts. Blood 57:781–787

    CAS  Google Scholar 

  62. Jung EM, Kwon O, Kwon K-S et al (2011) Evidences for correlation between the reduced VCAM-1 expression and hyaluronan synthesis during cellular senescence of human mesenchymal stem cells. Biochem Biophys Res Commun 404:463–469

    Article  CAS  PubMed  Google Scholar 

  63. Rasini V, Dominici M, Kluba T et al (2013) Mesenchymal stromal/stem cells markers in the human bone marrow. Cytotherapy 15:292–306

    Article  CAS  PubMed  Google Scholar 

  64. D'Ippolito G, Diabira S, Howard GA et al (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117:2971–2981

    Article  PubMed  Google Scholar 

  65. Baksh D, Zandstra PW, Davies JE (2007) A non-contact suspension culture approach to the culture of osteogenic cells derived from a CD49e(low) subpopulation of human bone marrow-derived cells. Biotechnol Bioeng 98:1195–1208

    Article  CAS  PubMed  Google Scholar 

  66. Otsuru S, Gordon PL, Shimono K et al (2012) Transplanted bone marrow mononuclear cells and MSCs impart clinical benefit to children with osteogenesis imperfecta through different mechanisms. Blood 120:1933–1941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Siegel G, Kluba T, Hermanutz-Klein U et al (2013) Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells. BMC Med 11:146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Dryden GW (2009) Overview of stem cell therapy for Crohn’s disease. Expert Opin Biol Ther 9:841–847

    Article  CAS  PubMed  Google Scholar 

  69. van Laar JM, Tyndall A (2006) Adult stem cells in the treatment of autoimmune diseases. Rheumatology 45:1187–1193

    Article  PubMed  Google Scholar 

  70. Jones E, Yang XB (2011) Mesenchymal stem cells and bone regeneration: current status. Injury 42:562–568

    Article  PubMed  Google Scholar 

  71. Smith JO, Aarvold A, Tayton ER et al (2011) Skeletal tissue regeneration: current approaches, challenges, and novel reconstructive strategies for an aging population. Tissue Eng B Rev 17:307–320

    Article  Google Scholar 

  72. Gregoretti MG, Gottardi D, Ghia P (1994) Characterization of bone-marrow stromal cells from multiple-myeloma. Leuk Res 18:675–682

    Article  CAS  PubMed  Google Scholar 

  73. Jones EA, English A, Kinsey SE et al (2006) Optimization of a flow cytometry-based protocol for detection and phenotypic characterization of multipotent mesenchymal stromal cells from human bone marrow. Cytometry B Clin Cytom 70:391–399

    Article  PubMed  Google Scholar 

  74. Noll JE, Williams SA, Tong CM et al (2013) Myeloma plasma cells alter the bone marrow microenvironment by stimulating the proliferation of mesenchymal stromal cells. Haematologica 99(1):163–171. doi:10.3324/haematol.2013.090977

    Article  PubMed  Google Scholar 

  75. Geyh S, Oz S, Cadeddu RP et al (2013) Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells. Leukemia 27:1841–1851

    Article  CAS  PubMed  Google Scholar 

  76. Flores-Figueroa E, Varma S, Montgomery K et al (2012) Distinctive contact between CD34+ hematopoietic progenitors and CXCL12+ CD271+ mesenchymal stromal cells in benign and myelodysplastic bone marrow. Lab Invest 92:1330–1341

    Article  CAS  PubMed  Google Scholar 

  77. Flores-Figueroa E, Arana-Trejo RM, Gutierrez-Espindola G et al (2005) Mesenchymal stem cells in myelodysplastic syndromes: phenotypic and cytogenetic characterization. Leuk Res 29:215–224

    Article  CAS  PubMed  Google Scholar 

  78. Lopez-Villar O, Garcia JL, Sanchez-Guijo FM et al (2009) Both expanded and uncultured mesenchymal stem cells from MDS patients are genomically abnormal, showing a specific genetic profile for the 5q-syndrome. Leukemia 23:664–672

    Article  CAS  PubMed  Google Scholar 

  79. Song L-X, Guo J, He Q et al (2012) Bone marrow mesenchymal stem cells in myelodysplastic syndromes: cytogenetic characterization. Acta Haematol 128:170–177

    Article  CAS  PubMed  Google Scholar 

  80. Bensidhoum M, Chapel A, Francois S et al (2004) Homing of in vitro expanded Stro-1(−) or Stro-1(+) human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood 103:3313–3319

    Article  CAS  PubMed  Google Scholar 

  81. Kuci S, Kuci Z, Kreyenberg H et al (2010) CD271 antigen defines a subset of multipotent stromal cells with immunosuppressive and lymphohematopoietic engraftment-promoting properties. Haematologica 95:651–659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Kurth TB, Dell'Accio F, Crouch V et al (2011) Functional mesenchymal stem cell niches in adult mouse knee joint synovium in vivo. Arthritis Rheum 63:1289–1300

    Article  PubMed  Google Scholar 

  83. Gronthos S, Franklin DM, Leddy HA et al (2001) Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 189:54–63

    Article  CAS  PubMed  Google Scholar 

  84. Laschober GT, Brunauer R, Jamnig A et al (2011) Age-specific changes of mesenchymal stem cells are paralleled by upregulation of CD106 expression as a response to an inflammatory environment. Rejuvenation Res 14:119–131

    Article  CAS  PubMed  Google Scholar 

  85. Sacchetti B, Funari A, Michienzi S et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131:324–336

    Article  CAS  PubMed  Google Scholar 

  86. Kozanoglu I, Boga C, Ozdogu H et al (2009) Human bone marrow mesenchymal cells express NG2: possible increase in discriminative ability of flow cytometry during mesenchymal stromal cell identification. Cytotherapy 11:527–533

    Article  CAS  PubMed  Google Scholar 

  87. Najar M, Raicevic G, Jebbawi F et al (2012) Characterization and functionality of the CD200-CD200R system during mesenchymal stromal cell interactions with T-lymphocytes. Immunol Lett 146:50–56

    Article  CAS  PubMed  Google Scholar 

  88. Sun S, Guo Z, Xiao X et al (2003) Isolation of mouse marrow mesenchymal progenitors by a novel and reliable method. Stem Cells 21:527–535

    Article  CAS  PubMed  Google Scholar 

  89. Valorani MG, Germani A, Otto WR et al (2010) Hypoxia increases Sca-1/CD44 co-expression in murine mesenchymal stem cells and enhances their adipogenic differentiation potential. Cell Tissue Res 341:111–120

    Article  CAS  PubMed  Google Scholar 

  90. Roobrouck VD, Clavel C, Jacobs SA et al (2011) Differentiation potential of human postnatal mesenchymal stem cells, mesoangioblasts, and multipotent adult progenitor cells reflected in their transcriptome and partially influenced by the culture conditions. Stem Cells 29:871–882

    Article  CAS  PubMed  Google Scholar 

  91. Serafini M, Dylla SJ, Oki M et al (2007) Hematopoietic reconstitution by multipotent adult progenitor cells: precursors to long-term hematopoietic stem cells. J Exp Med 204:129–139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jones, E., Schäfer, R. (2015). Biological Differences Between Native and Cultured Mesenchymal Stem Cells: Implications for Therapies. In: Rich, I. (eds) Stem Cell Protocols. Methods in Molecular Biology, vol 1235. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1785-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1785-3_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1784-6

  • Online ISBN: 978-1-4939-1785-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics