Skip to main content

Pediatric Biomechanics

  • Chapter
  • First Online:
Accidental Injury

Abstract

During the human postnatal developmental process, extensive tissue and morphological changes occur. Many take place in the first few years of life but substantial development for several body regions continues well into young adulthood. Along with overall change in size, these material and structural changes influence the biomechanical response of child such that they respond differently to traumatic load than an adult. Understanding the unique biomechanical response of the child is challenging, as compared to the wealth of biomechanical data on the adult response to trauma, pediatric biomechanical data are relatively sparse. As a result, quantitative scaling relationships based on anatomical and material differences have been historically used to understand the biomechanics of the child. The last decade, however, has seen a tremendous increase in contributions to the biomechanics literature based upon pediatric subjects – volunteers, post-mortem human subjects, and animal models – thus increasing our knowledge of how to design injury mitigation systems to protect the young.

In this chapter, aspects of developmental anatomy and biomechanical knowledge are reviewed to provide context for pediatric human injury prediction. Emphasis is initially placed on the head and brain as this body region represents the most common seriously injured body region for children in virtually all unintentional injury modes. Specifically, head injuries are particularly relevant clinically as the developing brain is difficult to evaluate and treat, and even mild brain injuries in childhood can lead to deficits that remain long after the injury. Discussion follows on the cervical spine and thorax as these body regions are not only important from an injury mitigation standpoint but they govern the kinematics of the head during traumatic loading and therefore play a role in head injury protection. A brief description follows for the other body regions: the abdomen and extremities as well as an outline of the scaling theory used by many researchers to scale adult biomechanical data to the child. The biomechanics data contained in this chapter may assist in improving the accuracy of pediatric injury criteria and the biofidelity of child anthropometric test devices (ATD) and human body computer models. Because of space limitations, this chapter does not serve as an inclusive data repository for all pediatric material property and biomechanical response data but rather summarizes the seminal publications in the field and directs the reader to other resources for more detailed data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams P (1995) Gray’s anatomy. Churchill Livingstone, New York

    Google Scholar 

  2. Agur A, Lee M (1991) Grant’s atlas of anatomy, 9th edn. Williams & Wilkins, Baltimore

    Google Scholar 

  3. Tanner J (1962) Growth at adolescence. Blackwell Scientific, Oxford

    Google Scholar 

  4. Tindall G, Cooper P, Barrow D (1996) The practice of neurosurgery. Williams & Wilkins, Baltimore. http://www.worldcat.org/title/practice-of-neurosurgery/oclc/30894343

  5. Youman J (1996) Neurological surgery. WB Saunders, Philadelphia

    Google Scholar 

  6. Behrman R, Vaughan VI (1987) Developmental pediatrics: growth and development. In: Nelson textbook of pediatrics, 13th edn. Philadelphia

    Google Scholar 

  7. Casey BJ, Giedd JN, Thomas KM (2000) Structural and functional brain development and its relation to cognitive development. Biol Psychol 54:241–257

    CAS  PubMed  Google Scholar 

  8. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, Rapoport JL (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–863

    CAS  PubMed  Google Scholar 

  9. Hubbard R (1971) Flexure of layered cranial bone. J Biomech 4:251–263

    CAS  PubMed  Google Scholar 

  10. McElhaney JH, Fogle JL, Melvin JW, Haynes RR, Roberts VL, Alemt NM, Alem NM (1970) Mechanical properties of cranial bone. J Biomech 3:495–511

    CAS  PubMed  Google Scholar 

  11. Melvin J, Evans F (1971) A strain energy approach to the mechanics of skull fracture. In: Proceedings of the 15th Stapp car crash conference, Coronado

    Google Scholar 

  12. Yoganandan N, Pintar FA, Sances A, Walsh PR, Ewing CL, Thomas DJ, Snyder RG (1995) Biomechanics of skull fracture. J Neurotrauma 12:659–668

    CAS  PubMed  Google Scholar 

  13. Kriewall J, Mcpherson GK, Tsai AC (1981) Bending properties and ash content of fetal cranial bone. J Biomech 14:73–79

    CAS  PubMed  Google Scholar 

  14. Kriewall T (1982) Structural, mechanical, and material properties of fetal cranial bone. Am J Obstet Gynecol 143:707–714

    CAS  PubMed  Google Scholar 

  15. McPherson GK, Kriewall TJ (1980) The elastic modulus of fetal cranial bone: a first step towards an understanding of the biomechanics of fetal head molding. J Biomech 13:9–16

    CAS  PubMed  Google Scholar 

  16. Margulies SS, Thibault KL (2000) Infant skull and suture properties: measurements and implications for mechanisms of pediatric brain injury. J Biomech Eng 122:364–371

    CAS  PubMed  Google Scholar 

  17. Coats B, Margulies SS (2006) Material properties of human infant skull and suture at high rates. J Neurotrauma 23:1222–1232

    PubMed  Google Scholar 

  18. Davis MT, Loyd AM, Shen H-YH, Mulroy MH, Nightingale RW, Myers BS, Bass CD (2012) The mechanical and morphological properties of 6 year-old cranial bone. J Biomech 45:2493–2498

    PubMed  Google Scholar 

  19. Jaslow C (1990) Mechanical properties of cranial sutures. J Biomech 23:313–321

    CAS  PubMed  Google Scholar 

  20. Irwin A, Mertz HJ (1997) Biomechanical basis for the CRABI and hybrid III child dummies. In: Proceedings of the 41st Stapp car crash conference. Orlando

    Google Scholar 

  21. Coats B, Margulies SS, Ji S (2007) Parametric study of head impact in the infant. Stapp Car Crash J 1–15

    Google Scholar 

  22. Klinich KD, Hulbert GM, Schneider LW, Beach PV (2002) Estimating infant head injury criteria and impact response using crash reconstruction and finite element modeling. In: Proceedings of the 46th Stapp car crash J. 46:165–194

    Google Scholar 

  23. Bain AC, Meaney DF (2000) Tissue-level thresholds for axonal damage in an experimental model of central nervous system white matter injury. J Biomech Eng 122:615–622

    CAS  PubMed  Google Scholar 

  24. Geddes DM, Cargill RS 2nd, LaPlaca MC (2003) Mechanical stretch to neurons results in a strain rate and magnitude-dependent increase in plasma membrane permeability. J Neurotrauma 20:1039–1049

    PubMed  Google Scholar 

  25. Morrison B III, Cater HL, Wang CC-B, Thomas FC, Hung CT, Ateshian GA, Sundstrom LE (2003) A tissue level tolerance criterion for living brain developed with an in vitro model of traumatic mechanical loading. Stapp Car Crash J 47:93–105

    PubMed  Google Scholar 

  26. Singh A, Kallakuri S, Chen C, Cavanaugh JM (2009) Structural and functional changes in nerve roots due to tension at various strains and strain rates: an in-vivo study. J Neurotrauma 26:627–640

    PubMed  Google Scholar 

  27. Smith DH, Wolf J, Lusardi TA, Lee VM-Y, Meaney DF (1999) High tolerance and delayed elastic response of cultured axons to dynamic stretch injury. J Neurosci 19:4263–4269

    CAS  PubMed  Google Scholar 

  28. Margulies SS, Thibault LE, Gennarelli TA (1990) Physical model simulations of brain injury in the primate. J Biomech 23:823–836

    CAS  PubMed  Google Scholar 

  29. Ibrahim NGN, Ralston J, Smith C, Margulies SS (2010) Physiological and pathological responses to head rotations in toddler piglets. J Neurotrauma 1035:1021–1035

    Google Scholar 

  30. Chatelin S, Constantinesco AA, Willinger RR (2010) Fifty years of brain tissue mechanical testing: from in vitro to in vivo investigations. Biorheology 47:255–276

    PubMed  Google Scholar 

  31. Gurdjian E (1970) Movements of the brain and brain stem from impact induced linear and angular acceleration. Trans Am Neurol Soc 95:248–249

    CAS  Google Scholar 

  32. Shelden CH, Pudenz RH, Restarski JS, Craig WM (1943) The lucite calvarium-A method for direct observation of the brain. J Neurosurg 3:487–505

    Google Scholar 

  33. Zou H, Schmiedeler JP, Hardy WN (2007) Separating brain motion into rigid body displacement and deformation under low-severity impacts. J Biomech 40:1183–1191

    PubMed  Google Scholar 

  34. Bayly PV, Cohen T, Leister E, Ajo D, Leuthardt E, Genin G (2005) Deformation of the human brain induced by mild acceleration. J Neurotrauma 22:845–856

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Sabet AA, Christoforou E, Zatlin B, Genin GM, Philip V, Bayly PV (2008) Deformation of the human brain induced by mild angular head acceleration. J Biomech 41:307–315

    PubMed Central  PubMed  Google Scholar 

  36. Ibrahim NGNN, Szczesny SES, Eucker S, Margulies SS, Hall S, Natesh R, Szczesny SES, Ryall K, Eucker S, Coats B, Margulies SS (2010) In situ deformations in the immature brain during rapid rotations. J Biomech Eng 132:044501

    PubMed  Google Scholar 

  37. Fitzgerald E, Freeland A (1970) Viscoelastic response of intervertebral discs at audio-frequencies. Med Biol Eng 9:459–478

    Google Scholar 

  38. Hayes W, Bodine A (1978) Flow-independent viscoelastic properties of articular cartilage matrix. J Biomech 11:407–419

    CAS  PubMed  Google Scholar 

  39. Metz H, McElhaney J, Ommaya A (1970) A comparison of the elasticity of live, dead, and fixed brain tissue. J Biomech 3:453–458

    CAS  PubMed  Google Scholar 

  40. Prange MT, Margulies SS (2002) Regional, directional, and age-dependent properties of the brain undergoing large deformation. J Biomech Eng 124:244–252

    PubMed  Google Scholar 

  41. Thibault KL, Margulies SS (1998) Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria. J Biomech 31:1119–1126

    CAS  PubMed  Google Scholar 

  42. Chatelin S, Vappou J, Roth S, Raul JS, Willinger R (2012) Towards child versus adult brain mechanical properties. J Mech Behav Biomed Mater 6:166–173

    CAS  PubMed  Google Scholar 

  43. Finan JD, Elkin BS, Pearson EM, Kalbian IL, Morrison B (2012) Viscoelastic properties of the rat brain in the sagittal plane: effects of anatomical structure and age. Ann Biomed Eng 40:70–78

    PubMed  Google Scholar 

  44. Gefen A, Gefen N, Zhu Q, Raghupathi R, Margulies SS (2003) Age-dependent changes in material properties of the brain and braincase of the rat. J Neurotrauma 20:1163–1177

    PubMed  Google Scholar 

  45. Gefen A, Margulies SS (2004) Are in vivo and in situ brain tissues mechanically similar? J Biomech 37:1339–1352

    PubMed  Google Scholar 

  46. Arbogast KB, Margulies SS (1998) Material characterization of the brainstem from oscillatory shear tests. J Biomech 31:801–807

    CAS  PubMed  Google Scholar 

  47. Nicolle S, Lounis M, Willinger R, Palierne J-F (2005) Shear linear behavior of brain tissue over a large frequency range. Biorheology 42:209–223

    CAS  PubMed  Google Scholar 

  48. Prange MT, Luck JF, Dibb A, Van Ee C, Nightingale RW, Myers BS (2004) Mechanical properties and anthropometry of the human infant head. Stapp Car Crash J 48:279–299

    PubMed  Google Scholar 

  49. Yeates KO, Kaizar E, Rusin J, Bangert B, Dietrich A, Nuss K, Wright M, Taylor HG (2012) Reliable change in postconcussive symptoms and its functional consequences among children with mild traumatic brain injury. Arch Pediatr Adolesc Med 166:615–622

    PubMed Central  PubMed  Google Scholar 

  50. Anderson V, Catroppa C, Morse S, Haritou F, Rosenfeld J (2005) Functional plasticity or vulnerability after early brain injury? Pediatrics 116:1374–1382

    PubMed  Google Scholar 

  51. Beauchamp MH, Ditchfield M, Maller JJ, Catroppa C, Godfrey C, Rosenfeld JV, Kean MJ, Anderson V (2011) Hippocampus, amygdala and global brain changes 10 years after childhood traumatic brain injury. Int J Dev Neurosci 29:137–143

    CAS  PubMed  Google Scholar 

  52. McKinlay A (2010) Controversies and outcomes associated with mild traumatic brain injury in childhood and adolescences. Child Care Health Dev 36:3–21

    CAS  PubMed  Google Scholar 

  53. Wade SL, Gerry Taylor H, Yeates KO, Drotar D, Stancin T, Minich NM, Schluchter M (2006) Long-term parental and family adaptation following pediatric brain injury. J Pediatr Psychol 31:1072–1083

    PubMed  Google Scholar 

  54. Holbourn AHS (1956) Private communication to Strich

    Google Scholar 

  55. Missios S, Harris BT, Dodge CP, Simoni MK, Costine BA, Lee Y-L, Quebada PB, Hillier SC, Adams LB, Duhaime A-C (2009) Scaled cortical impact in immature swine. J Neurotrauma 26:1943–1951

    PubMed Central  PubMed  Google Scholar 

  56. Bittigau P, Sifringer M, Pohl D, Stadthaus D, Ishimaru M, Shimizu H, Ikeda M, Lang D, Speer A, Olney JW, Ikonomidou C (1999) Apoptotic neurodegeneration following trauma is markedly enhanced in the immature brain. Ann Neurol 45:724–735

    CAS  PubMed  Google Scholar 

  57. Ikonomidou C, Mosinger JL, Salles KS, Labruyere J, Olney JW (1989) Sensitivity of the developing rat brain to hypobaric/ischemic damage parallels sensitivity to N-methyl-aspartate neurotoxicity. J Neurosci 9:2809–2818

    CAS  PubMed  Google Scholar 

  58. McDonald JW, Silverstein FS, Johnston MV (1988) Neurotoxicity of N-methyl-d-aspartate is markedly enhanced in developing rat central nervous system. Brain Res 459:200–203

    CAS  PubMed  Google Scholar 

  59. Durham SR, Duhaime A-C (2007) Maturation-dependent response of the immature brain to experimental subdural hematoma. J Neurotrauma 24:5–14

    PubMed  Google Scholar 

  60. Cernak I, Chang T, Ahmed F, Cruz MI, Vink R, Stoica B, Faden AI (2010) Pathophysiological response to experimental diffuse brain trauma differs as a function of developmental age. Dev Neurosci 32:442–453

    CAS  PubMed  Google Scholar 

  61. Eucker S, Smith C, Ralston J, Friess SH, Margulies SS (2011) Physiological and histopathological responses following closed rotation head injury depend on direction of head motion. Exp Neurol 227:79–88

    PubMed Central  PubMed  Google Scholar 

  62. Backaitis S, Mertz H (1995) Hybird III: the first human-like crash test ATD, vol PT44. Society of Automotive Engineers, Warrendale

    Google Scholar 

  63. Sances AJ, Yoganandan N (1986) Human head injury tolerance. Mechanisms of head and spine trauma. Aloray, Goshen

    Google Scholar 

  64. Versace J (1971) A review of the severity index. In: Proceedings of the 15th Stapp car crash conference. Society of Automotive Engineers, Warrendale, Coronado, pp 771–796

    Google Scholar 

  65. Ommaya A, Yarnell P, Hirsch A, Harris E (1967) Scaling of experimental data on cerebral concussion in sub-human primates to concussion threshold for man. In: Proceedings of the 11th Stapp car crash conference, Anaheim, pp 73–80

    Google Scholar 

  66. Duhaime A, Gennarelli T, Thibault L, Bruce D, Margulies S, Wiser R (1987) The shaken baby syndrome. J Neurosurg 66:409–415

    CAS  PubMed  Google Scholar 

  67. Melvin J (1995) Injury assessment reference values for the CRABI 6-month infant ATD in a rear-facing infant restraint with airbag deployment. In: SAE World Congress, Detroit, MI

    Google Scholar 

  68. Kleinberger M, Sun E, Eppinger RH, Kuppa S, Saul R (1998) Development of improved injury criteria for the assessment of automotive restraint systems. National Highway Traffic Safety Administration

    Google Scholar 

  69. Hinck VC, Hopkins CE, Savara BS (1962) Sagittal diameter of the cervical spinal canal in children. Radiology 79:97–108

    CAS  PubMed  Google Scholar 

  70. Tulsi RS (1971) Growth of the human vertebral column. An osteological study. Acta Anat (Basel) 79(4):570–580

    CAS  Google Scholar 

  71. Yousefzadeh DK, El-Khoury GY, Smith WL (1982) Normal sagittal diameter and variation in the pediatric cervical spine. Radiology 144(2):319–325

    CAS  PubMed  Google Scholar 

  72. Bailey DK (1952) The normal cervical spine in infants and children. Radiology 59(5):712–719

    CAS  PubMed  Google Scholar 

  73. Ogden J, Grogan D, Light T (1987) Postnatal development and growth of musculoskeletal system. In: Albright J, Brand R (eds) The scientific basis of orthopedics. Appleton and Lange, Norwalk

    Google Scholar 

  74. O’Rahilly R, Benson D (1985) Development of vertebral column. In: Bradford D, Hensinger RN (eds) The pediatric spine. Thieme, New York, pp 3–17

    Google Scholar 

  75. Verbout AJ (1985) The development of the vertebral column. Adv Anat Embryol Cell Biol 90:1–122

    CAS  PubMed  Google Scholar 

  76. Chandraraj S, Briggs CA (1991) Multiple growth cartilages in the neural arch. Anat Rec 230(1):114–120

    CAS  PubMed  Google Scholar 

  77. Ford DM, McFadden KD, Bagnall KM (1982) Sequence of ossification in human vertebral neural arch centers. Anat Rec 203(1):175–178

    CAS  PubMed  Google Scholar 

  78. Scheuer L, Black SM (2004) The juvenile skeleton. Elsevier Academic Press, London/San Diego

    Google Scholar 

  79. Bick EM, Copel JW (1950) Longitudinal growth of the human vertebra; a contribution to human osteogeny. J Bone Joint Surg Am 32(A:4):803–814

    CAS  PubMed  Google Scholar 

  80. Carpenter EB (1961) Normal and abnormal growth of the spine. Clin Orthop 21:49–55

    CAS  PubMed  Google Scholar 

  81. Gooding CA, Neuhauser EB (1965) Growth and development of the vertebral body in the presence and absence of normal stress. Am J Roentgenol Radium Ther Nucl Med 93:388–394

    CAS  PubMed  Google Scholar 

  82. Haas S (1939) Growth in length of vertebrae. Arch Surg 38:245–249

    Google Scholar 

  83. Kasai T, Ikata T, Katoh S, Miyake R, Tsubo M (1996) Growth of the cervical spine with special reference to its lordosis and mobility. Spine (Phila Pa 1976) 21(18):2067–2073

    CAS  Google Scholar 

  84. Ogden J, Ganey T, Sasse J, Neame P, Hilbelink D (1994) Development and maturation of the axial skeleton. In: Weinsten D (ed) The pediatric spine: principles and practice. Raven, New York

    Google Scholar 

  85. Roaf R (1960) Vertebral growth and its mechanical control. J Bone Joint Surg (Br) 42-B:40–59

    CAS  Google Scholar 

  86. Boreadis AG, Gershon-Cohen J (1956) Luschka joints of the cervical spine. Radiology 66(2):181–187

    CAS  PubMed  Google Scholar 

  87. Compere E, Tachdjian M, Kernahan W (1959) Luschka joints: their anatomy, physiology and pathology. Orthopedics 1:159–168

    Google Scholar 

  88. Hayashi K, Yabuki T (1985) Origin of the uncus and of Luschka’s joint in the cervical spine. J Bone Joint Surg Am 67(5):788–791

    CAS  PubMed  Google Scholar 

  89. Kumaresan S, Yoganandan N, Pintar F (1997) Methodology to quantify the uncovertebral joint in the human cervical spine. J Musculoskeletal Res 1(2):1–9

    Google Scholar 

  90. Scheuer L, Black SM (2000) Developmental juvenile osteology. Academic, San Diego

    Google Scholar 

  91. Maiman D, Yoganandan N (1991) Biomechanica of cervical spine trauma. In: Black P (ed) Clinical neurosurgery, vol 37. Williams and Wilkins, Baltimore, pp 543–570

    Google Scholar 

  92. Yoganandan N, Pintar F, Larson SJ, Sances A Jr (1996) Frontiers in head and neck trauma: clinical and biomechanical. IOS Press, Amsterdam

    Google Scholar 

  93. Kumaresan S, Yoganandan N, Pintar F (1997) Age-specific pediatric cervical spine biomechanical responses: three-dimensional nonlinear finite element models. In: Proceedings of the Stapp car crash conference, Orlando

    Google Scholar 

  94. Kumaresan S, Yoganandan N, Pintar FA (1998) Finite element modeling approaches of human cervical spine facet joint capsule. J Biomech 31(4):371–376

    CAS  PubMed  Google Scholar 

  95. Bonadio WA (1993) Cervical spine trauma in children: Part II. Mechanisms and manifestations of injury, therapeutic considerations. Am J Emerg Med 11(3):256–278

    CAS  PubMed  Google Scholar 

  96. Bonadio WA (1993) Cervical spine trauma in children: Part I. General concepts, normal anatomy, radiographic evaluation. Am J Emerg Med 11(2):158–165

    CAS  PubMed  Google Scholar 

  97. Cattell HS, Filtzer DL (1965) Pseudosubluxation and other normal variations in the cervical spine in children. A study of one hundred and sixty children. J Bone Joint Surg Am 47(7):1295–1309

    CAS  PubMed  Google Scholar 

  98. Evans D, Bethem D (1985) Cervical spine injuries in children. J Pediatr Orthop 9:563–568

    Google Scholar 

  99. Hadley MN, Zabramski JM, Browner CM, Rekate H, Sonntag VK (1988) Pediatric spinal trauma. Review of 122 cases of spinal cord and vertebral column injuries. J Neurosurg 68(1):18–24

    CAS  PubMed  Google Scholar 

  100. Seacrist T, Arbogast KB, Maltese MR, Garcia-Espana JF, Lopez-Valdes FJ, Kent RW, Tanji H, Higuchi K, Balasubramanian S (2012) Kinetics of the cervical spine in pediatric and adult volunteers during low speed frontal impacts. J Biomech 45(1):99–106

    PubMed  Google Scholar 

  101. Gray H, Clemente C (1984) Gray’s anatomy of the human body. Lea and Febinger, New York

    Google Scholar 

  102. Myklebust JB, Pintar F, Yoganandan N, Cusick JF, Maiman D, Myers TJ, Sances A Jr (1988) Tensile strength of spinal ligaments. Spine (Phila Pa 1976) 13(5):526–531

    CAS  Google Scholar 

  103. Yoganandan N, Pintar F (1999) Biomechanics of the cranio-cervical junction. In: Boeker D (ed) Cranio-cervical junction – anatomy, physiology, therapy. Bierman Verlag, Koln, pp 2–14

    Google Scholar 

  104. Coventry M, Ghormley R, Kernohan J (1945) Intervetebral disc: its microscopic anatomy and pathology. Part I: Anatomy, development, and physiology. J Bone Joint Surg 27(1):105–112

    Google Scholar 

  105. Hallen A (1962) Collagen and ground substance of human intervetebral disc at different ages. Acta Chem Scand 16(3):705–710

    CAS  Google Scholar 

  106. Hirsch C, Evans F (1965) Studies on some physical properties of infant compact bone. Acta Orthop Scand 35:300–313

    CAS  PubMed  Google Scholar 

  107. Oda J, Tanaka H, Tsuzuki N (1988) Intervertebral disc changes with aging of human cervical vertebra. From the neonate to the eighties. Spine (Phila Pa 1976) 13(11):1205–1211

    CAS  Google Scholar 

  108. Peacock A (1956) Observations on postnatal structure of invertebral disc in man. J Anat 86(2):162–179

    Google Scholar 

  109. Taylor JR (1970) Growth of human intervertebral disc. J Anat 107(Pt 1):183–184

    CAS  PubMed  Google Scholar 

  110. Walmsley R (1953) The development and growth of the intervertebral disc. Edinb Med J 60(8):341–364

    CAS  PubMed  Google Scholar 

  111. Dawson RM, Latif Z, Haacke EM, Cavanaugh JM (2013) Magnetic resonance imaging-based relationships between neck muscle cross-sectional area and neck circumference for adults and children. Eur Spine J 22(2):446–452

    PubMed Central  PubMed  Google Scholar 

  112. Lavallee AV, Ching RP, Nuckley DJ (2013) Developmental biomechanics of neck musculature. J Biomech 46(3):527–534

    PubMed Central  PubMed  Google Scholar 

  113. Snyder R (1977) Anthopometry of infants, children and youths to age 18 for product safety design. University of Michigan, Ann Arbor

    Google Scholar 

  114. Stapp J (1949) Human response to linear deceleration. Air Force report

    Google Scholar 

  115. Ewing CL, Thomas D, Beeler G, Patrick L, GIllis D (1968) Dynamic response of head and neck of the living human to gravity impact acceleration. In: Proceedings of the Stapp car crash conference, Detroit

    Google Scholar 

  116. Mertz H, Patrick L (1971) Strength and response of the human neck. In: Proceedings of the Stapp car crash conference, Coronado

    Google Scholar 

  117. Wismans J, Philippens M, van Oorschot D, Kallieris D, Mattern R (1987) Comparison of human volunteer and cadaver head-neck response in frontal flexion. In: Proceedings of the Stapp car crash conference, New Orleans

    Google Scholar 

  118. Arbogast KB, Balasubramanian S, Seacrist T, Maltese MR, Garcia-Espana JF, Hopely T, Constans E, Lopez-Valdes FJ, Kent RW, Tanji H, Higuchi K (2009) Comparison of kinematic responses of the head and spine for children and adults in low-speed frontal sled tests. Stapp Car Crash J 53:329–372

    PubMed  Google Scholar 

  119. Seacrist T, Saffioti J, Balasubramanian S, Kadlowec J, Sterner R, Garcia-Espana JF, Arbogast KB, Maltese MR (2012) Passive cervical spine flexion: the effect of age and gender. Clin Biomech (Bristol, Avon) 27(4):326–333

    Google Scholar 

  120. Ohman AM, Beckung ER (2008) Reference values for range of motion and muscle function of the neck in infants. Pediatr Phys Ther 20(1):53–58

    PubMed  Google Scholar 

  121. Lewandowski J, Szulc P (2003) The range of motion of the cervical spine in children aged from 3 to 7 years – an electrogoniometric study. Folia Morphol (Warsz) 62(4):459–461

    Google Scholar 

  122. Arbogast KB, Gholve PA, Friedman JE, Maltese MR, Tomasello MF, Dormans JP (2007) Normal cervical spine range of motion in children 3–12 years old. Spine (Phila Pa 1976) 32(10):E309–E315

    Google Scholar 

  123. Lynch-Caris T, Brelin-Fornari J, Pelt C (2006) Cervical range of motion data in children. In: SAE World Congress, Detroit, SAE Tech Paper #2006-01-1140

    Google Scholar 

  124. Greaves LL, Van Toen C, Melnyk A, Koenig L, Zhu Q, Tredwell S, Mulpuri K, Cripton PA (2009) Pediatric and adult three-dimensional cervical spine kinematics: effect of age and sex through overall motion. Spine (Phila Pa 1976) 34(16):1650–1657

    Google Scholar 

  125. Duncan JM (1874) Laboratory note: on the tensile strength of the fresh adult foetus. Br Med J 2(729):763–764

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Brun-Cassan F, Page M, Pincemaille Y (1993) Comparative study of restrained child dummies and cadavers in experimental crashes. In: Child occupant protection symposium, San Antonio

    Google Scholar 

  127. Dejammes M, Tarriere C, Thomas C (1984) Exploration of biomechanical data towards a better evaluation of tolerance for children involved in automotive accidents. In: Proceedings of the Stapp car crash conference, Chicago

    Google Scholar 

  128. Kallieris D, Barz J, Schmidt G (1976) Comparison between child cadavers and child ATD by using child restraint systems in simulated collisions. In: Proceedings of the Stapp car crash conference, Dearborn, pp 511–542

    Google Scholar 

  129. Mattern R, Kallieris D, Riedl H, von Wiren B (2002) Reanalysis of two child PMHS-tests. Final report. University of Heidelberg, Heidelberg

    Google Scholar 

  130. Wismans J, Maltha J, Melvin J (1979) Child restraint evaluation by experimental and mathematical simulation. In: Proceedings of the Stapp car crash conference, San Diego

    Google Scholar 

  131. McGowan DA, Voo L, Liu Y (1993) Distraction failure of immature spine. ASME Adv Bioeng 24:24–25

    Google Scholar 

  132. Ouyang J, Zhu Q, Zhao W, Xu Y, Chen W, Zhong S (2005) Biomechanical assessment of the pediatric cervical spine under bending and tensile loading. Spine (Phila Pa 1976) 30(24):E716–E723

    Google Scholar 

  133. Luck JF, Nightingale RW, Loyd AM, Prange MT, Dibb AT, Song Y, Fronheiser L, Myers BS (2008) Tensile mechanical properties of the perinatal and pediatric PMHS osteoligamentous cervical spine. Stapp Car Crash J 52:107–134

    PubMed  Google Scholar 

  134. Luck JF, Nightingale RW, Song Y, Kait JR, Loyd AM, Myers BS, Bass CR (2013) Tensile failure properties of the perinatal, neonatal, and pediatric cadaveric cervical spine. Spine (Phila Pa 1976) 38(1):E1–E12

    Google Scholar 

  135. Dibb AT, Nightingale RW, Luck JF, Chancey VC, Fronheiser LE, Myers BS (2009) Tension and combined tension-extension structural response and tolerance properties of the human male ligamentous cervical spine. J Biomech Eng 131(8):081008

    PubMed  Google Scholar 

  136. Nightingale RW, Carol Chancey V, Ottaviano D, Luck JF, Tran L, Prange M, Myers BS (2007) Flexion and extension structural properties and strengths for male cervical spine segments. J Biomech 40(3):535–542

    PubMed  Google Scholar 

  137. Van Ee CA, Nightingale RW, Camacho DL, Chancey VC, Knaub KE, Sun EA, Myers BS (2000) Tensile properties of the human muscular and ligamentous cervical spine. Stapp Car Crash J 44:85–102

    PubMed  Google Scholar 

  138. Nuckley DJ, Linders DR, Ching RP (2013) Developmental biomechanics of the human cervical spine. J Biomech 46:1147–1154

    Google Scholar 

  139. Mertz H, Driscoll G, Lenox J, Nyquist G, Weber D (1982) Responses of animals exposed to deployment of carious passenger inflatable restraint system concepts for a variety of collision severities and animal positions. In: Proceedings of the International Technical Conference on Experimental Safety Vehicles, Kyoto

    Google Scholar 

  140. Prasad P, Daniel R (1984) Biomechanical analysis of head, neck, and torso injuries to child surrogates due to sudden torso acceleration. In: Proceedings of the Stapp car crash conference, Chicago

    Google Scholar 

  141. Pintar FA, Mayer RG, Yoganandan N, Sun E (2000) Child neck strength characteristics using an animal model. Stapp Car Crash J 44:77–83

    CAS  PubMed  Google Scholar 

  142. Hilker CE, Yoganandan N, Pintar FA (2002) Experimental determination of adult and pediatric neck scale factors. Stapp Car Crash J 46:417–429

    PubMed  Google Scholar 

  143. Ching RP, Nuckley DJ, Hertsted SM, Eck MP, Mann FA, Sun EA (2001) Tensile mechanics of the developing cervical spine. Stapp Car Crash J 45:329–336

    CAS  PubMed  Google Scholar 

  144. Yoganandan N, Kumaresan S, Pintar FA (2000) Geometric and mechanical properties of human cervical spine ligaments. J Biomech Eng 122(6):623–629

    CAS  PubMed  Google Scholar 

  145. Clarke EC, Appleyard RC, Bilston LE (2007) Immature sheep spines are more flexible than mature spines: an in vitro biomechanical study. Spine (Phila Pa 1976) 32(26):2970–2979

    Google Scholar 

  146. Nuckley DJ, Ching RP (2006) Developmental biomechanics of the cervical spine: tension and compression. J Biomech 39(16):3045–3054

    PubMed  Google Scholar 

  147. Nuckley DJ, Hertsted SM, Eck MP, Ching RP (2005) Effect of displacement rate on the tensile mechanics of pediatric cervical functional spinal units. J Biomech 38(11):2266–2275

    PubMed  Google Scholar 

  148. Nuckley DJ, Hertsted SM, Ku GS, Eck MP, Ching RP (2002) Compressive tolerance of the maturing cervical spine. Stapp Car Crash J 46:431–440

    PubMed  Google Scholar 

  149. Elias PZ, Nuckley DJ, Ching RP (2006) Effect of loading rate on the compressive mechanics of the immature baboon cervical spine. J Biomech Eng 128(1):18–23

    PubMed  Google Scholar 

  150. Yamada H, Evans FG (1970) Strength of biological materials. Williams & Wilkins, Baltimore

    Google Scholar 

  151. Eppinger RH, Sun E, Bandak F, Haffner M, Khaewpong N, Maltese MR, Kuppa S, Nguyen T, Takhounts E, Tannous R, Zhang A, Saul R (1999) Development of improved injury criteria for the assessment of advanced automotive restraint systems – II: supplement to NHTSA docket. National Highway Traffic Safety Administration

    Google Scholar 

  152. Yoganandan N, Kumaresan S, Pintar FA (2001) Biomechanics of the cervical spine. Part 2. Cervical spine soft tissue responses and biomechanical modeling. Clin Biomech (Bristol, Avon) 16(1):1–27

    CAS  Google Scholar 

  153. Kumaresan S, Yoganandan N, Pintar F, Mueller W (2000) Biomechanics of pediatric cervical spine: compression, flexion and extension responses. J Crash Prev Inj Control 2:87–101

    Google Scholar 

  154. Kumaresan S, Yoganandan N, Pintar FA, Maiman DJ, Kuppa S (2000) Biomechanical study of pediatric human cervical spine: a finite element approach. J Biomech Eng 122(1):60–71

    CAS  PubMed  Google Scholar 

  155. Franklyn M, Peiris S, Huber C, Yang KH (2007) Pediatric material properties: a review of human child and animal surrogates. Crit Rev Biomed Eng 35(3–4):197–342

    PubMed  Google Scholar 

  156. Kent R, Ivarsson J, Maltese M (2013) Experimental injury biomechanics of the pediatric thorax and abdomen. In: Crandall JR, Myers BS, Meaney DF, Schmidke D (eds) Pediatric injury biomechanics. Springer, New York, pp 221–286

    Google Scholar 

  157. Kemper AR, McNally C, Kennedy EA, Manoogian SJ, Rath AL, Ng TP, Stitzel JD, Smith EP, Duma SM, Matsuoka F (2005) Material properties of human rib cortical bone from dynamic tension coupon testing. Stapp Car Crash J 49:199–230

    PubMed  Google Scholar 

  158. Sturtz G (1980) Biomechanical data of children. In: Proceedings of the Stapp car crash conference. Society of Automotive Engineers, Warrendale. Orlando, SAE Paper No. 801313

    Google Scholar 

  159. Weaver JK, Chalmers J (1966) Cancellous bone: its strength and changes with aging and an evaluation of some methods for measuring its mineral content I. Age changes in cancellous bone. J Bone Joint Surg 48:289–299

    CAS  PubMed  Google Scholar 

  160. Mosekilde L, Danielsen CC (1987) Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone 8:79–85

    CAS  PubMed  Google Scholar 

  161. Mosekilde L, Viidik A, Mosekilde L (1985) Correlation between the compressive strength of iliac and vertebral trabecular bone in normal individuals. Bone 6:291–295

    CAS  PubMed  Google Scholar 

  162. Mosekilde L, Mosekilde L (1986) Normal vertebral body size and compressive strength: relations to age and to vertebral and iliac trabecular bone compressive strength. Bone 7:207–212

    CAS  PubMed  Google Scholar 

  163. McElhaney J, Alem NM, Roberts VL (1970) A porous block model for cancellous bones. Proceedings of the Winter Annual Meeting of the American Society of Mechanical Engineers, New York

    Google Scholar 

  164. Oyen ML, Lau AG, Kindig MW, Stacey SC, Kent RW (2006) Mechanical properties of structural tissues of the pediatric thorax. J Biomech 39:S156

    Google Scholar 

  165. Mattice JM, Lau AG, Oyen ML, Kent RW (2006) Spherical indentation load-relaxation of soft biological tissues. J Mater Res 21:2003–2010

    CAS  Google Scholar 

  166. Khamin NS (1977) Strength properties of the human aorta and their variation with age. Polym Mech 13:100–104

    Google Scholar 

  167. Ouyang J, Zhao W, Xu Y, Chen W, Zhong S (2006) Thoracic impact testing of pediatric cadaveric subjects. J Trauma 61(6):1492–1500

    PubMed  Google Scholar 

  168. Kroell C, Nahum A (1974) Impact tolerance and response of the human thorax II. In: Proceedings of the 18th Stapp car crash conference. Society of Automotive Engineers, Warrendale, Ann Arbor

    Google Scholar 

  169. Parent DP (2009) Scaling and optimization of thoracic impact response in pediatric subjects. University of Virginia, Charlottesville

    Google Scholar 

  170. Gruben KG, Guerci AD, Halperin HR, Popel AS, Tsitlik JE (1993) Sternal force-displacement relationship during cardiopulmonary resuscitation. J Biomech Eng 115:195–201

    CAS  PubMed  Google Scholar 

  171. Tsitlik JE, Weisfeldt ML, Chandra N, Effron MB, Halperin HR, Levin HR (1983) Elastic properties of the human chest during cardiopulmonary resuscitation. Crit Care Med 11:685–692

    CAS  PubMed  Google Scholar 

  172. Vallis CJ, Mackenzie I, Lucas BG (1979) The force necessary for external cardiac compression. Practitioner 223:268–270

    CAS  PubMed  Google Scholar 

  173. Maltese MR, Castner T, Niles D, Nishisaki A, Balasubramanian S, Nysaether J, Sutton R, Nadkarni V, Arbogast KB (2008) Methods for determining pediatric thoracic force-deflection characteristics from cardiopulmonary resuscitation. Stapp Car Crash J 52:83–106

    PubMed  Google Scholar 

  174. American Heart Association (2006) 2005 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 112(Suppl)

    Google Scholar 

  175. Arbogast KB, Maltese MR, Nadkarni VM, Steen PA, Nysaether JB (2006) Anterior-posterior thoracic force–deflection characteristics measured during cardiopulmonary resuscitation: comparison to post-mortem human subject data. Stapp Car Crash J 50: 131–145

    PubMed  Google Scholar 

  176. Kent R, Lopez-Valdes FJ, Lamp J, Lau S, Parent D, Kerrigan J, Lessley D, Salzar R, Sochor M, Bass D, Maltese MR (2012) Biomechanical response targets for physical and computational models of the pediatric trunk. Traffic Inj Prev 13(5):499–506

    PubMed  Google Scholar 

  177. Kent R, Salzar R, Kerrigan J, Parent D, Lessley D, Sochor M, Luck JF, Loyd A, Song Y, Nightingale R, Bass CRD, Maltese MR (2009) Pediatric thoracoabdominal biomechanics. Stapp Car Crash J 53: 373–401

    PubMed  Google Scholar 

  178. Hoke RS, Chamberlain D (2004) Skeletal chest injuries secondary to cardiopulmonary resuscitation. Resuscitation 63:327–338

    PubMed  Google Scholar 

  179. Holmes JF, Sokolove PE, Brant WE, Kuppermann N (2002) A clinical decision rule for identifying children with thoracic injuries after blunt torso trauma [see comment]. Ann Emerg Med 39:492–499

    PubMed  Google Scholar 

  180. Garcia VF, Gotschall CS, Eichelberger MR, Bowman LM (1990) Rib fractures in children: a marker of severe trauma. J Trauma Inj Infect Crit Care 30:695–700

    CAS  Google Scholar 

  181. Kallieris D, Mattern R, Schmidt G, Eppinger R (1981) Quantification of side impact responses and injuries. In: Proceedings of the Stapp car crash conference. Society of Automotive Engineers, Warrendale, San Francisco, pp 329–366

    Google Scholar 

  182. Stocker JT, Dehner LP (1992) Pediatric pathology. Lippincott, Philadelphia

    Google Scholar 

  183. Fazekas JG, Kosa F, Jobba G, Meszaros E (1972) Compression strength of the human spleen under the action of blunt force. Arch Kriminol 149(5):158–174

    CAS  PubMed  Google Scholar 

  184. Schmidt G (1979) The age as a factor influencing soft tissue injuries. In: Proceedings of the International Conference on the Biomechanics of Impact

    Google Scholar 

  185. Stingl J, Baca V, Cech P, Kovanda J, Kovandova H, Mandys V, Rejmontova J, Sosna B (2002) Morphology and some biomechanical properties of human liver and spleen. Surg Radiol Anat 24(5):285–289

    CAS  PubMed  Google Scholar 

  186. Seki S, Iwamoto H (1998) Disruptive forces for swine heart, liver, and spleen: their breaking stresses. J Trauma 45(6):1079–1083

    CAS  PubMed  Google Scholar 

  187. Liu Z, Bilston L (2000) On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour. Biorheology 37(3):191–201

    CAS  PubMed  Google Scholar 

  188. Nasseri S, Bilston L, Phan-Thien N (2002) Viscoelastic properties of pig kidney in shear, experimental results and modeling. Rheol Acta 41:180–192

    CAS  Google Scholar 

  189. Mattice J (2006) Age-dependent changes in the viscoelastic response of the porcine kidney parenchyma using spherical indentation and finite element analysis. University of Virginia, Charlottesville

    Google Scholar 

  190. Zhao DL, Shi JS (2005) [Bone marrow metastasis of stomach cancer: a case report]. Zhonghua Zhong Liu Za Zhi 27(12):712

    PubMed  Google Scholar 

  191. Heijnsdijk EA, van der Voort M, de Visser H, Dankelman J, Gouma DJ (2003) Inter- and intraindividual variabilities of perforation forces of human and pig bowel tissue. Surg Endosc 17(12):1923–1926

    CAS  PubMed  Google Scholar 

  192. Gögler E, Best A, Braess H (1977) Biomechanical experiments with animals on abdominal tolerance levels. In: Stapp car crash conference, New Orleans, pp 713–751

    Google Scholar 

  193. Kent R, Stacey S, Kindig M, Forman J, Woods W, Rouhana SW, Higuchi K, Tanji H, Lawrence SS, Arbogast KB (2006) Biomechanical response of the pediatric abdomen, part 1: development of an experimental model and quantification of structural response to dynamic belt loading. Stapp Car Crash J 50:1–26

    PubMed  Google Scholar 

  194. Chamouard F, Tarriere C, Baudrit P (1996) Protection of children on board vehicles: influence of pelvis design and thigh and abdomen stiffness on the submarining risk for dummies installed on a booster. In: Proceedings of the 15th Enhanced Safety of Vehicles Conference

    Google Scholar 

  195. Kent R, Stacey S, Kindig M, Woods W, Evans J, Rouhana SW, Higuchi K, Tanji H, St Lawrence S, Arbogast KB (2008) Biomechanical response of the pediatric abdomen, Part 2: injuries and their correlation with engineering parameters. Stapp Car Crash J 52:135–166

    PubMed  Google Scholar 

  196. Rockwood CA, Beaty JH, Kasser JR (2010) Rockwood and Wilkins’ fractures in children, 7th edn. Wolters Kluwer/Lippincott/Williams & Wilkins, Philadelphia

    Google Scholar 

  197. Salter RB, Harris WR (1963) Injuries involving the epiphyseal plate. J Bone Joint Surg 45:587–622

    Google Scholar 

  198. Crandall J, Myers B, Meaney D, Schmidtke S (2013) Pediatric injury biomechanics. Springer, New York

    Google Scholar 

  199. Canale S, Daugherty K, Jones L (1998) Campbell’s operative orthopedics. Mosby, New York

    Google Scholar 

  200. Arbogast KB, Mari-Gowda S, Kallan MJ, Durbin DR, Winston FK (2002) Pediatric pelvic fractures in side impact collisions. Stapp Car Crash J 46:285–296

    PubMed  Google Scholar 

  201. Silber JS, Flynn JM (2002) Changing patterns of pediatric pelvic fractures with skeletal maturation: implications for classification and management. J Pediatr Orthop 22(1):22–26

    PubMed  Google Scholar 

  202. Vinz H (1969) Mechanical principles of typical fractures in children. Zentralbl Chir 94(45):1509–1514

    CAS  PubMed  Google Scholar 

  203. Vinz H (1970) Change in the resistance properties of compact bone tissue in the course of aging. Gegenbaurs Morphol Jahrb 115(2):257–272

    CAS  PubMed  Google Scholar 

  204. Vinz H (1972) Firmness of pure bone substance. Approximation method for the determination of bone tissue firmness related to the cavity-free cross section. Gegenbaurs Morphol Jahrb 117(4):453–460

    CAS  PubMed  Google Scholar 

  205. Wall JC (1974) The effects of age and strain rate on the mechanical properties of bone. In: International Meeting on Biomechanics of Trauma in Children, Lyon, pp 185–193

    Google Scholar 

  206. Wall JC, Chatterji SK, Jeffery JW (1979) Age-related changes in the density and tensile strength of human femoral cortical bone. Calcif Tissue Int 27(2):105–108

    CAS  PubMed  Google Scholar 

  207. Currey JD, Butler G (1975) The mechanical properties of bone tissue in children. J Bone Joint Surg Am 57(6):810–814

    CAS  PubMed  Google Scholar 

  208. Currey JD (1979) Changes in the impact energy absorption of bone with age. J Biomech 12(6):459–469

    CAS  PubMed  Google Scholar 

  209. Currey JD, Brear K, Zioupos P (1996) The effects of ageing and changes in mineral content in degrading the toughness of human femora. J Biomech 29(2):257–260

    CAS  PubMed  Google Scholar 

  210. Nafei A, Danielsen CC, Linde F, Hvid I (2000) Properties of growing trabecular ovine bone. Part I: mechanical and physical properties. J Bone Joint Surg (Br) 82(6):910–920

    CAS  Google Scholar 

  211. Chung SM, Batterman SC, Brighton CT (1976) Shear strength of the human femoral capital epiphyseal plate. J Bone Joint Surg Am 58(1):94–103

    CAS  PubMed  Google Scholar 

  212. Miltner E, Kallieris D (1989) Quasi-static and dynamic bending stress of the pediatric femur for producing a femoral fracture. Z Rechtsmed 102(8):535–544

    CAS  PubMed  Google Scholar 

  213. Ouyang J, Zhu QA, Zhao WD, Xu YQ, Chen WS, Zhong SZ (2003) Experimental cadaveric study of lateral impact of the pelvis in children. Di Yi Jun Yi Da Xue Xue Bao 23(5):397–401, 408

    PubMed  Google Scholar 

  214. Cavanaugh JM, Waliko T, Malthora A (1990) Biomechanical response and injury of the pelvis in twelve sled side impacts. Stapp Car Crash J, Orlando, 1–12

    Google Scholar 

  215. Viano D (1989) Biomechanical responses and injuries in blunt lateral impacts. In: Proceedings of the Stapp car crash conference, Washington DC, pp 113–142

    Google Scholar 

  216. Ouyang J, Zhu QA, Zhao WD, Xu YQ, Chen WS, Zhong SZ (2003) Biomechanical character of extremity long bones in children. Chin J Clin Anat 21:620–623

    Google Scholar 

  217. Kubo K, Kanehisa H, Kawakami Y, Fukanaga T (2001) Growth changes in the elastic properties of human tendon structures. Int J Sports Med 22(2):138–143

    CAS  PubMed  Google Scholar 

  218. Lam TC, Frank CB, Shrive NG (1993) Changes in the cyclic and static relaxations of the rabbit medial collateral ligament complex during maturation. J Biomech 26(1):9–17

    CAS  PubMed  Google Scholar 

  219. Woo SL, Hollis JM, Adams DJ, Lyon RM, Takai S (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med 19(3):217–225

    CAS  PubMed  Google Scholar 

  220. Woo SL, Ohland KJ, Weiss JA (1990) Aging and sex-related changes in the biomechanical properties of the rabbit medial collateral ligament. Mech Ageing Dev 56(2):129–142

    CAS  PubMed  Google Scholar 

  221. Woo SL, Orlando CA, Gomez MA, Frank CB, Akeson WH (1986) Tensile properties of the medial collateral ligament as a function of age. J Orthop Res 4(2):133–141

    CAS  PubMed  Google Scholar 

  222. Woo SL, Peterson RH, Ohland KJ, Sites TJ, Danto MI (1990) The effects of strain rate on the properties of the medial collateral ligament in skeletally immature and mature rabbits: a biomechanical and histological study. J Orthop Res 8(5):712–721

    CAS  PubMed  Google Scholar 

  223. Ivarsson BJ, Crandall JR, Longhitano D, Okamoto M (2004) Lateral injury criteria for the 6-year-old pedestrian – part II: criteria for the upper and lower extremities. SAE 2004 World Congress and exposition. Society of Automotive Engineers, Detroit. SAE Paper No. 2004-01-1755

    Google Scholar 

  224. Maltese MR, Arbogast KB, Wang Z, Craig M (2011) Scaling methods applied to thoracic force displacement characteristics derived from cardiopulmonary resuscitation. In: Proceedings of the 22nd Enhanced Safety of Vehicles Conference, Washington, DC

    Google Scholar 

  225. Van Ratingen MR, Twisk D, Schrooten M, Beusenberg MC (1997) Biomechanically based design and performance targets for a 3-year old child crash ATD for frontal and side impact. In: Proceedings of the 41st Stapp car crash conference, Orlando

    Google Scholar 

  226. Langhaar H (1951) Dimensional analysis and theory of models. Wiley, New York

    Google Scholar 

  227. Eppinger RH, Marcus JH, Morgan RM (1984) Development of ATD and injury index for NHTSA’s thoracic side impact protection research program. SAE Government Industry Meeting and Exposition. Paper No. 840885. The Society of Automotive Engineers, Warrendale

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristy B. Arbogast Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arbogast, K.B., Maltese, M.R. (2015). Pediatric Biomechanics. In: Yoganandan, N., Nahum, A., Melvin, J. (eds) Accidental Injury. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1732-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1732-7_22

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1731-0

  • Online ISBN: 978-1-4939-1732-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics