Skip to main content

Lumbar Spine Injury Biomechanics

  • Chapter
  • First Online:
Accidental Injury

Abstract

The primary biomechanical function of the lumbar spine is to bear the weight of the torso, head-neck, and upper extremities and support physiologic movement. The lumbar spinal column resides vertically between the thoracic spine and sacrum, and consists of five bony vertebrae interconnected by soft tissues including the intervertebral discs, ligaments, and muscles to maintain the integrity of the column under physiologic and traumatic environments. Injuries secondary to excessive deformations or loading resulting from external dynamic forces such as falls, or in military environments, aviator ejections, helicopter crashes or underbody blasts, can result in fracture of the lumbar spine with or without mechanical and clinical instability, and loss of normal function. These types of injuries can have significant consequences for the patient. Mechanically-induced traumas are transmitted to the lumbar spine in a variety of different ways. For example, axial or eccentric compressive forces transmitted to the lumbar spine through a vehicle seat sustaining high-rate vertical acceleration may result in different fracture types (e.g., burst fracture versus anteriorly-oriented wedge fracture), lead to mechanical instability, and impair normal daily activities. These acute consequences are in addition to the chronic effects of lumbar spine trauma including chronic back and lower extremity pain due to spinal degeneration, spinal cord or nerve root injury, or loss of lower limb sensation and function. This chapter outlines lumbar spine injury classification including mechanisms and clinical implication, describes experimental techniques used to understand injury mechanics, and provides a listing of biomechanical fracture tolerance and injury criteria from experimental studies incorporating human cadavers. Due to the breadth of literature on lumbar spine injury mechanics, this chapter is not intended to be comprehensive. Rather, the reader will be provided with a overview of concepts relevant to the contemporary understanding of lumbar spine injury mechanics and tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griffith HB, Gleave JR, Taylor RG (1966) Changing patterns of fracture in the dorsal and lumbar spine. Br Med J 1:891–894

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Nicoll EA (1949) Fractures of the dorso-lumbar spine. J Bone Joint Surg Br 31B:376–394

    CAS  PubMed  Google Scholar 

  3. Wang MC, Pintar F, Yoganandan N, Maiman DJ (2009) The continued burden of spine fractures after motor vehicle crashes. J Neurosurg Spine 10:86–92

    Article  PubMed  Google Scholar 

  4. Richards D, Carhart M, Raasch C, Pierce J, Steffey D, Ostarello A (2006) Incidence of thoracic and lumbar spine injuries for restrained occupants in frontal collisions. Annu Proc Assoc Adv Automot Med 50:125–139

    PubMed Central  PubMed  Google Scholar 

  5. Smith JA, Siegel JH, Siddiqi SQ (2005) Spine and spinal cord injury in motor vehicle crashes: a function of change in velocity and energy dissipation on impact with respect to the direction of crash. J Trauma 59:117–131

    Article  PubMed  Google Scholar 

  6. Richter D, Hahn MP, Ostermann PA, Ekkernkamp A, Muhr G (1996) Vertical deceleration injuries: a comparative study of the injury patterns of 101 patients after accidental and intentional high falls. Injury 27:655–659

    Article  CAS  PubMed  Google Scholar 

  7. Inamasu J, Guiot BH (2007) Thoracolumbar junction injuries after motor vehicle collision: are there differences in restrained and nonrestrained front seat occupants? J Neurosurg Spine 7:311–314

    Article  PubMed  Google Scholar 

  8. Hsu JM, Joseph T, Ellis AM (2003) Thoracolumbar fracture in blunt trauma patients: guidelines for diagnosis and imaging. Injury 34:426–433

    Article  PubMed  Google Scholar 

  9. Aleman KB, Meyers MC (2010) Mountain biking injuries in children and adolescents. Sports Med 40: 77–90

    Article  PubMed  Google Scholar 

  10. Gertzbein SD, Khoury D, Bullington A, St John TA, Larson AI (2012) Thoracic and lumbar fractures associated with skiing and snowboarding injuries according to the AO Comprehensive Classification. Am J Sports Med 40:1750–1754

    Article  PubMed  Google Scholar 

  11. Alexander MJ (1985) Biomechanical aspects of lumbar spine injuries in athletes: a review. Can J Appl Sport Sci 10:1–20

    CAS  PubMed  Google Scholar 

  12. Khan N, Husain S, Haak M (2008) Thoracolumbar injuries in the athlete. Sports Med Arthrosc Rev 16:16–25

    Article  Google Scholar 

  13. Smiley JR (1964) Rcaf ejection experience: decade 1952–1961. Aerosp Med 35:125–129

    CAS  PubMed  Google Scholar 

  14. Hearon B, Thomas H (1982) Mechanism of vertebral fracture in the F/FB-111 ejection experience. Aviat Space Environ Med 53:440–448

    CAS  PubMed  Google Scholar 

  15. Edwards M (1996) Anthropometric measurements and ejection injuries. Aviat Space Environ Med 67: 1144–1147

    CAS  PubMed  Google Scholar 

  16. Osborne RG, Cook AA (1997) Vertebral fracture after aircraft ejection during Operation Desert Storm. Aviat Space Environ Med 68:337–341

    CAS  PubMed  Google Scholar 

  17. Williams CS (1993) F-16 pilot experience with combat ejections during the Persian Gulf War. Aviat Space Environ Med 64:845–847

    CAS  PubMed  Google Scholar 

  18. Moreno Vazquez JM, Duran Tejeda MR, Garcia Alcon JL (1999) Report of ejections in the Spanish Air Force, 1979–1995: an epidemiological and comparative study. Aviat Space Environ Med 70: 686–691

    CAS  PubMed  Google Scholar 

  19. Lewis ME (2006) Survivability and injuries from use of rocket-assisted ejection seats: analysis of 232 cases. Aviat Space Environ Med 77:936–943

    PubMed  Google Scholar 

  20. Nakamura A (2007) Ejection experience 1956–2004 in Japan: an epidemiological study. Aviat Space Environ Med 78:54–58

    PubMed  Google Scholar 

  21. Shanahan DF, Shanahan MO (1989) Injury in U.S. Army helicopter crashes October 1979-September 1985. J Trauma 29:415–422; discussion 423

    Article  CAS  PubMed  Google Scholar 

  22. Scullion JE, Heys SD, Page G (1987) Pattern of injuries in survivors of a helicopter crash. Injury 18: 13–14

    Article  CAS  PubMed  Google Scholar 

  23. Italiano P (1966) Vertebral fractures of pilots in helicopter accidents. Riv Med Aeronaut Spaz 29: 577–602

    CAS  PubMed  Google Scholar 

  24. Helgeson MD, Lehman RA Jr, Cooper P, Frisch M, Andersen RC, Bellabarba C (2011) Retrospective review of lumbosacral dissociations in blast injuries. Spine 36:E469–E475

    Article  PubMed  Google Scholar 

  25. Ragel BT, Allred CD, Brevard S, Davis RT, Frank EH (2009) Fractures of the thoracolumbar spine sustained by soldiers in vehicles attacked by improvised explosive devices. Spine 34:2400–2405

    Article  PubMed  Google Scholar 

  26. Poopitaya S, Kanchanaroek K (2009) Injuries of the thoracolumbar spine from tertiary blast injury in Thai military personnel during conflict in southern Thailand. J Med Assoc Thai 92(Suppl 1):S129–S134

    PubMed  Google Scholar 

  27. Schoenfeld AJ, Lehman RA Jr, Hsu JR (2012) Evaluation and management of combat-related spinal injuries: a review based on recent experiences. Spine J 12:817–823

    Article  PubMed  Google Scholar 

  28. Schoenfeld AJ, Goodman GP, Belmont PJ Jr (2012) Characterization of combat-related spinal injuries sustained by a US Army Brigade Combat Team during Operation Iraqi Freedom. Spine J 12:771–776

    Article  PubMed  Google Scholar 

  29. Blair JA, Patzkowski JC, Schoenfeld AJ, Cross Rivera JD, Grenier ES, Lehman RA Jr, Hsu JR (2012) Spinal column injuries among Americans in the global war on terrorism. J Bone Joint Surg Am 94:e135(131–139)

    Article  Google Scholar 

  30. Lehman RA Jr, Paik H, Eckel TT, Helgeson MD, Cooper PB, Bellabarba C (2012) Low lumbar burst fractures: a unique fracture mechanism sustained in our current overseas conflicts. Spine J 12:784–790

    Article  PubMed  Google Scholar 

  31. Kang DG, Lehman RA Jr, Carragee EJ (2012) Wartime spine injuries: understanding the improvised explosive device and biophysics of blast trauma. Spine J 12:849–857

    Article  PubMed  Google Scholar 

  32. Holdsworth F (1970) Fractures, dislocations, and fracture-dislocations of the spine. J Bone Joint Surg Am 52:1534–1551

    CAS  PubMed  Google Scholar 

  33. Ferguson RL, Allen BL Jr (1984) A mechanistic classification of thoracolumbar spine fractures. Clin Orthop Relat Res Oct:77–88

    Google Scholar 

  34. Larson SJ, Maiman DJ (1999) Surgery of the lumbar spine. Thieme, New York

    Google Scholar 

  35. Davies WE, Morris JH, Hill V (1980) An analysis of conservative (non-surgical) management of thoracolumbar fractures and fracture-dislocations with neural damage. J Bone Joint Surg Am 62:1324–1328

    CAS  PubMed  Google Scholar 

  36. White AA, Panjabi MM (2013) Clinical biomechanics of the spine. Williams & Wilkins, Philadelphia

    Google Scholar 

  37. Westerborn A, Olsson O (1951) Mechanics, treatment and prognosis of fractures of the dorso-lumbar spine. Acta Chir Scand 102:59–83

    CAS  PubMed  Google Scholar 

  38. Kaufer H, Hayes JT (1966) Lumbar fracture-dislocation. A study of twenty-one cases. J Bone Joint Surg Am 48:712–730

    CAS  PubMed  Google Scholar 

  39. Chance GQ (1948) Note on a type of flexion fracture of the spine. Br J Radiol 21:452

    Article  CAS  PubMed  Google Scholar 

  40. Anderson PA, Rivara FP, Maier RV, Drake C (1991) The epidemiology of seatbelt-associated injuries. J Trauma 31:60–67

    Article  CAS  PubMed  Google Scholar 

  41. Howland WJ, Curry JL, Buffington CB (1965) Fulcrum fractures of the lumbar spine. Transverse fracture induced by an improperly placed seat belt. JAMA 193:240–241

    Article  CAS  PubMed  Google Scholar 

  42. Raney EM, Bennett JT (1992) Pediatric Chance fracture. Spine 17:1522–1524

    Article  CAS  PubMed  Google Scholar 

  43. Gallagher DJ, Heinrich SD (1990) Pediatric Chance fracture. J Orthop Trauma 4:183–187

    Article  CAS  PubMed  Google Scholar 

  44. Yoganandan N, Larson SJ, Pintar F, Maiman DJ, Reinartz J, Sances A Jr (1990) Biomechanics of lumbar pedicle screw/plate fixation in trauma. Neurosurgery 27:873–880; discussion 880–871

    Article  CAS  PubMed  Google Scholar 

  45. Shono Y, McAfee PC, Cunningham BW (1994) Experimental study of thoracolumbar burst fractures. A radiographic and biomechanical analysis of anterior and posterior instrumentation systems. Spine 19:1711–1722

    Article  CAS  PubMed  Google Scholar 

  46. Duma SM, Kemper AR, McNeely DM, Brolinson PG, Matsuoka F (2006) Biomechanical response of the lumbar spine in dynamic compression. Biomed Sci Instrum 42:476–481

    PubMed  Google Scholar 

  47. Hongo M, Abe E, Shimada Y, Murai H, Ishikawa N, Sato K (1999) Surface strain distribution on thoracic and lumbar vertebrae under axial compression. The role in burst fractures. Spine 24:1197–1202

    Article  CAS  PubMed  Google Scholar 

  48. Langrana NA, Harten RR, Lin DC, Reiter MF, Lee CK (2002) Acute thoracolumbar burst fractures: a new view of loading mechanisms. Spine 27: 498–508

    Article  CAS  PubMed  Google Scholar 

  49. Shirado O, Zdeblick TA, McAfee PC, Cunningham BW, DeGroot H, Warden KE (1992) Quantitative histologic study of the influence of anterior spinal instrumentation and biodegradable polymer on lumbar interbody fusion after corpectomy. A canine model. Spine 17:795–803

    Article  CAS  PubMed  Google Scholar 

  50. Kazarian L, Graves GA (1977) Compressive strength characteristics of the human vertebral centrum. Spine 2:1–14

    Article  Google Scholar 

  51. Ochia RS, Tencer AF, Ching RP (2003) Effect of loading rate on endplate and vertebral body strength in human lumbar vertebrae. J Biomech 36: 1875–1881

    Article  PubMed  Google Scholar 

  52. Perey O (1957) Fracture of the vertebral end-plate in the lumbar spine; an experimental biochemical investigation. Acta Orthop Scand Supplementum 25:1–101

    Article  Google Scholar 

  53. Alkalay RN, von Stechow D, Torres K, Hassan S, Sommerich R, Zurakowski D (2008) The effect of cement augmentation on the geometry and structural response of recovered osteopenic vertebrae: an anterior-wedge fracture model. Spine 33:1627–1636

    Article  PubMed  Google Scholar 

  54. Belkoff SM, Mathis JM, Jasper LE, Deramond H (2001) The biomechanics of vertebroplasty. The effect of cement volume on mechanical behavior. Spine 26:1537–1541

    Article  CAS  PubMed  Google Scholar 

  55. Hansson T, Roos B, Nachemson A (1980) The bone mineral content and ultimate compressive strength of lumbar vertebrae. Spine 5:46–55

    Article  CAS  PubMed  Google Scholar 

  56. Steens J, Verdonschot N, Aalsma AM, Hosman AJ (2007) The influence of endplate-to-endplate cement augmentation on vertebral strength and stiffness in vertebroplasty. Spine 32:E419–E422

    Article  PubMed  Google Scholar 

  57. Bartley MH Jr, Arnold JS, Haslam RK, Jee WS (1966) The relationship of bone strength and bone quantity in health, disease, and aging. J Gerontol 21:517–521

    Article  PubMed  Google Scholar 

  58. Bell GH, Dunbar O, Beck JS, Gibb A (1967) Variations in strength of vertebrae with age and their relation to osteoporosis. Calcif Tissue Res 1:75–86

    Article  CAS  PubMed  Google Scholar 

  59. Skaggs DL, Weidenbaum M, Iatridis JC, Ratcliffe A, Mow VC (1994) Regional variation in tensile properties and biochemical composition of the human lumbar anulus fibrosus. Spine 19:1310–1319

    Article  CAS  PubMed  Google Scholar 

  60. Ebara S, Iatridis JC, Setton LA, Foster RJ, Mow VC, Weidenbaum M (1996) Tensile properties of nondegenerate human lumbar anulus fibrosus. Spine 21: 452–461

    Article  CAS  PubMed  Google Scholar 

  61. Acaroglu ER, Iatridis JC, Setton LA, Foster RJ, Mow VC, Weidenbaum M (1995) Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus. Spine 20:2690–2701

    Article  CAS  PubMed  Google Scholar 

  62. Green TP, Adams MA, Dolan P (1993) Tensile properties of the annulus fibrosus II. Ultimate tensile strength and fatigue life. Eur Spine J 2:209–214

    Article  CAS  PubMed  Google Scholar 

  63. Ambrosetti-Giudici S, Gedet P, Ferguson SJ, Chegini S, Burger J (2010) Viscoelastic properties of the ovine posterior spinal ligaments are strain dependent. Clin Biomech 25:97–102

    Article  Google Scholar 

  64. Lucas SR, Bass CR, Crandall JR, Kent RW, Shen FH, Salzar RS (2009) Viscoelastic and failure properties of spine ligament collagen fascicles. Biomech Model Mechanobiol 8:487–498

    Article  PubMed  Google Scholar 

  65. Bass CR, Planchak CJ, Salzar RS, Lucas SR, Rafaels KA, Shender BS, Paskoff G (2007) The temperature-dependent viscoelasticity of porcine lumbar spine ligaments. Spine 32:E436–E442

    Article  PubMed  Google Scholar 

  66. Lu WW, Luk KD, Holmes AD, Cheung KM, Leong JC (2005) Pure shear properties of lumbar spinal joints and the effect of tissue sectioning on load sharing. Spine 30:E204–E209

    Article  PubMed  Google Scholar 

  67. Iida T, Abumi K, Kotani Y, Kaneda K (2002) Effects of aging and spinal degeneration on mechanical properties of lumbar supraspinous and interspinous ligaments. Spine J 2:95–100

    Article  PubMed  Google Scholar 

  68. Neumann P, Keller TS, Ekstrom L, Hansson T (1994) Effect of strain rate and bone mineral on the structural properties of the human anterior longitudinal ligament. Spine 19:205–211

    Article  CAS  PubMed  Google Scholar 

  69. Neumann P, Ekstrom LA, Keller TS, Perry L, Hansson TH (1994) Aging, vertebral density, and disc degeneration alter the tensile stress-strain characteristics of the human anterior longitudinal ligament. J Orthop Res 12:103–112

    Article  CAS  PubMed  Google Scholar 

  70. Pintar FA, Yoganandan N, Myers T, Elhagediab A, Sances A Jr (1992) Biomechanical properties of human lumbar spine ligaments. J Biomech 25: 1351–1356

    Article  CAS  PubMed  Google Scholar 

  71. Neumann P, Keller TS, Ekstrom L, Perry L, Hansson TH, Spengler DM (1992) Mechanical properties of the human lumbar anterior longitudinal ligament. J Biomech 25:1185–1194

    Article  CAS  PubMed  Google Scholar 

  72. Hukins DW, Kirby MC, Sikoryn TA, Aspden RM, Cox AJ (1990) Comparison of structure, mechanical properties, and functions of lumbar spinal ligaments. Spine 15:787–795

    CAS  PubMed  Google Scholar 

  73. Hasberry S, Pearcy MJ (1986) Temperature dependence of the tensile properties of interspinous ligaments of sheep. J Biomed Eng 8:62–66

    Article  CAS  PubMed  Google Scholar 

  74. Nachemson AL, Evans JH (1968) Some mechanical properties of the third human lumbar interlaminar ligament (ligamentum flavum). J Biomech 1:211–220

    Article  CAS  PubMed  Google Scholar 

  75. Tkaczuk H (1968) Tensile properties of human lumbar longitudinal ligaments. Acta Orthop Scand Suppl 115:111+

    Google Scholar 

  76. Zhu D, Gu G, Wu W, Gong H, Zhu W, Jiang T, Cao Z (2008) Micro-structure and mechanical properties of annulus fibrous of the L4-5 and L5-S1 intervertebral discs. Clin Biomech 23(Suppl 1):S74–S82

    Article  Google Scholar 

  77. Hirsch C (1955) The reaction of intervertebral discs to compression forces. J Bone joint Surg Am 37-A: 1188–1196

    CAS  PubMed  Google Scholar 

  78. Willen J, Lindahl S, Irstam L, Aldman B, Nordwall A (1984) The thoracolumbar crush fracture. An experimental study on instant axial dynamic loading: the resulting fracture type and its stability. Spine 9:624–631

    Article  CAS  PubMed  Google Scholar 

  79. Oxland TR, Panjabi MM, Lin RM (1994) Axes of motion of thoracolumbar burst fractures. J Spinal Disord 7:130–138

    Article  CAS  PubMed  Google Scholar 

  80. Fredrickson BE, Mann KA, Yuan HA, Lubicky JP (1988) Reduction of the intracanal fragment in experimental burst fractures. Spine 13:267–271

    Article  CAS  PubMed  Google Scholar 

  81. Mermelstein LE, McLain RF, Yerby SA (1998) Reinforcement of thoracolumbar burst fractures with calcium phosphate cement. A biomechanical study. Spine 23:664–670; discussion 670–661

    Article  CAS  PubMed  Google Scholar 

  82. Kallemeier PM, Beaubien BP, Buttermann GR, Polga DJ, Wood KB (2008) In vitro analysis of anterior and posterior fixation in an experimental unstable burst fracture model. J Spinal Disord Tech 21:216–224

    Article  PubMed  Google Scholar 

  83. Jones HL, Crawley AL, Noble PC, Schoenfeld AJ, Weiner BK (2011) A novel method for the reproducible production of thoracolumbar burst fractures in human cadaveric specimens. Spine J 11:447–451

    Article  PubMed  Google Scholar 

  84. Kifune M, Panjabi MM, Liu W, Arand M, Vasavada A, Oxland T (1997) Functional morphology of the spinal canal after endplate, wedge, and burst fractures. J Spinal Disord 10:457–466

    Article  CAS  PubMed  Google Scholar 

  85. Panjabi MM, Kifune M, Wen L, Arand M, Oxland TR, Lin RM, Yoon WS, Vasavada A (1995) Dynamic canal encroachment during thoracolumbar burst fractures. J Spinal Disord 8:39–48

    Article  CAS  PubMed  Google Scholar 

  86. Stemper BD, Storvik SG, Yoganandan N, Baisden JL, Fijalkowski RJ, Pintar FA, Shender BS, Paskoff GR (2011) A new PMHS model for lumbar spine injuries during vertical acceleration. J Biomech Eng 133:081002

    Article  PubMed  Google Scholar 

  87. Gozulov SA, Korzhen'iants VA, Skrypnik VG, Sushkov Iu N (1966) Study of the durability of the human vertebrae under compression. Arkh Anat Gistol Embriol 51:13–18

    CAS  PubMed  Google Scholar 

  88. Ash JH, Kerrigan JR, Arregui-Dalmases C, Del Pozo E, Crandall J (2010) Endplate indentation of the fourth lumbar vertebra – biomed 2010. Biomed Sci Instrum 46:160–165

    PubMed  Google Scholar 

  89. Labrom RD, Tan JS, Reilly CW, Tredwell SJ, Fisher CG, Oxland TR (2005) The effect of interbody cage positioning on lumbosacral vertebral endplate failure in compression. Spine 30:E556–E561

    Article  PubMed  Google Scholar 

  90. Hansson T, Roos B (1980) The influence of age, height, and weight on the bone mineral content of lumbar vertebrae. Spine 5:545–551

    Article  CAS  PubMed  Google Scholar 

  91. Hou Y, Yuan W (2012) Influences of disc degeneration and bone mineral density on the structural properties of lumbar end plates. Spine J 12:249–256

    Article  PubMed  Google Scholar 

  92. Closkey RF, Parsons JR, Lee CK, Blacksin MF, Zimmerman MC (1993) Mechanics of interbody spinal fusion. Analysis of critical bone graft area. Spine 18:1011–1015

    Article  CAS  PubMed  Google Scholar 

  93. Hollowell JP, Vollmer DG, Wilson CR, Pintar FA, Yoganandan N (1996) Biomechanical analysis of thoracolumbar interbody constructs. How important is the endplate? Spine 21:1032–1036

    Article  CAS  PubMed  Google Scholar 

  94. Jost B, Cripton PA, Lund T, Oxland TR, Lippuner K, Jaeger P, Nolte LP (1998) Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density. Eur Spine J 7:132–141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Stemper BD, Yoganandan N, Baisden JL, Pintar FA, Shender BS (2012) Rate-dependent failure characteristics of thoraco-lumbar vertebrae: application to the military environment. In: Proceedings of the ASME 2012 summer bioengineering conference, Fajardo

    Google Scholar 

  96. Hirsch C, Nachemson A (1954) New observations on the mechanical behavior of lumbar discs. Acta Orthop Scand 23:254–283

    Article  CAS  PubMed  Google Scholar 

  97. Denis F (1983) The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine 8:817–831

    Article  CAS  PubMed  Google Scholar 

  98. Dai LY, Yao WF, Cui YM, Zhou Q (2004) Thoracolumbar fractures in patients with multiple injuries: diagnosis and treatment-a review of 147 cases. J Trauma 56:348–355

    Article  PubMed  Google Scholar 

  99. Wittenberg RH, Hargus S, Steffen R, Muhr G, Botel U (2002) Noncontiguous unstable spine fractures. Spine 27:254–257

    Article  PubMed  Google Scholar 

  100. Kifune M, Panjabi MM, Arand M, Liu W (1995) Fracture pattern and instability of thoracolumbar injuries. Eur Spine J 4:98–103

    Article  CAS  PubMed  Google Scholar 

  101. Panjabi MM, Kifune M, Liu W, Arand M, Vasavada A, Oxland TR (1998) Graded thoracolumbar spinal injuries: development of multidirectional instability. Eur Spine J 7:332–339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Panjabi MM, Oxland TR, Kifune M, Arand M, Wen L, Chen A (1995) Validity of the three-column theory of thoracolumbar fractures. A biomechanic investigation. Spine 20:1122–1127

    Article  CAS  PubMed  Google Scholar 

  103. Ochia RS, Ching RP (2002) Internal pressure measurements during burst fracture formation in human lumbar vertebrae. Spine 27:1160–1167

    Article  PubMed  Google Scholar 

  104. Ewing CL (1966) Vertebral fracture in jet aircraft accidents: a statistical analysis for the period 1959 through 1963, U. S. Navy. Aerosp Med 37:505–508

    CAS  PubMed  Google Scholar 

  105. Harrison WD (1979) Ejection experience in F/FB-111 Aircraft/1967–1978. Safe J

    Google Scholar 

  106. Smelsey SO (1970) Study of pilots who have made multiple ejections. Aerosp Med 41:563–566

    CAS  PubMed  Google Scholar 

  107. Smiley JR (1965) RCAF ejection experience 1952–1961. RCAF Institute of Aviation Medicine, Toronto, pp 18

    Google Scholar 

  108. Sandstedt P (1989) Experiences of rocket seat ejections in the Swedish Air Force: 1967–1987. Aviat Space Environ Med 60:367–373

    CAS  PubMed  Google Scholar 

  109. Eiband AM (1959) Human tolerance to rapidly applied accelerations: a summary of the literature. National Aeronautics and Space Administration (NASA), Washington, DC

    Google Scholar 

  110. Weiss MS, Matson DL, Mawn SV (1989) Guidelines for safe human exposure to impact acceleration. Naval Biodynamics Laboratory, New Orleans

    Google Scholar 

  111. Latham F (1957) A study in body ballistics: seat ejection. Proc R Soc Lond B Biol Sci 147:121–139

    Article  CAS  PubMed  Google Scholar 

  112. Stech EI, Payne PR (1969) Dynamic models of the human body. Aerospace Medical Research Laboratory

    Google Scholar 

  113. Brown T, Hansen RJ, Yorra AJ (1957) Some mechanical tests on the lumbosacral spine with particular reference to the intervertebral discs; a preliminary report. J Bone Joint Surg Am 39-A:1135–1164

    CAS  PubMed  Google Scholar 

  114. Coermann RR (1962) The mechanical impedance of the human body in sitting and standing position at low frequencies. Hum Factors 4:227–253

    CAS  PubMed  Google Scholar 

  115. Brinkley JW, Shaffer JT (1971) Dynamic simulation techniques for the design of escape systems: current applications and future air force requirements. Wright-Patterson Air Force Base

    Google Scholar 

  116. Chandler R (1985) Human injury criteria relative to civil aircraft seat and restraint systems. Society of Automotive Engineers (SAE), 851847

    Google Scholar 

Download references

Acknowledgments

 The authors gratefully acknowledge the contributions Kim Chapman and the Zablocki VA Medical Center Medical Media for providing many of the figures used in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian D. Stemper Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stemper, B.D., Pintar, F.A., Baisden, J.L. (2015). Lumbar Spine Injury Biomechanics. In: Yoganandan, N., Nahum, A., Melvin, J. (eds) Accidental Injury. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1732-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1732-7_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1731-0

  • Online ISBN: 978-1-4939-1732-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics