Skip to main content

Aggrecan: Approaches to Study Biophysical and Biomechanical Properties

  • Protocol
  • First Online:
Glycosaminoglycans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1229))

Abstract

Aggrecan, the most abundant extracellular proteoglycan in cartilage (~35 % by dry weight), plays a key role in the biophysical and biomechanical properties of cartilage. Here, we review several approaches based on atomic force microscopy (AFM) to probe the physical, mechanical, and structural properties of aggrecan at the molecular level. These approaches probe the response of aggrecan over a wide time (frequency) scale, ranging from equilibrium to impact dynamic loading. Experimental and theoretical methods are described for the investigation of electrostatic and fluid-solid interactions that are key mechanisms underlying the biomechanical and physicochemical functions of aggrecan. Using AFM-based imaging and nanoindentation, ultrastructural features of aggrecan are related to its mechanical properties, based on aggrecans harvested from human vs. bovine, immature vs. mature, and healthy vs. osteoarthritic cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Maroudas A (1980) Physical chemistry of articular cartilage and the intervertebral disc. The Joints and Synovial Fluid 2:239–291

    Article  Google Scholar 

  2. Hardingham T, Fosang A (1992) Proteoglycans: many forms and many functions. FASEB J 6(3):861–870

    CAS  PubMed  Google Scholar 

  3. Buschmann MD, Grodzinsky AJ (1995) A molecular-model of proteoglycan-associated electrostatic forces in cartilage mechanics. J Biomech Eng 117(2):179–192

    Article  CAS  PubMed  Google Scholar 

  4. Eisenberg SR, Grodzinsky AJ (1985) Swelling of articular cartilage and other connective tissues: electromechanochemical forces. J Orthop Res 3(2):148–159

    Article  CAS  PubMed  Google Scholar 

  5. Bayliss MT, Ali SY (1978) Age-related changes in the composition and structure of human articular-cartilage proteoglycans. Biochem J 176:683–693

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Deutsch AJ, Midura RJ, Plaas AH (1995) Structure of chondroitin sulfate on aggrecan isolated from bovine tibial and costochondral growth plates. J Orthop Res 13(2):230–239

    Article  CAS  PubMed  Google Scholar 

  7. Bay-Jensen A-C, Hoegh-Madsen S, Dam E, Henriksen K, Sondergaard BC, Pastoureau P, Qvist P, Karsdal MA (2010) Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis? Rheumatol Int 30(4):435–442

    Article  PubMed  Google Scholar 

  8. Roughley PJ, White R (1980) Age-related changes in the structure of the proteoglycan subunits from human articular cartilage. J Biol Chem 255(1):217–224

    CAS  PubMed  Google Scholar 

  9. Ng L, Grodzinsky AJ, Patwari P, Sandy J, Plaas A, Ortiz C (2003) Individual cartilage aggrecan macromolecules and their constituent glycosaminoglycans visualized via atomic force microscopy. J Struct Biol 143(3):242–257

    Article  CAS  PubMed  Google Scholar 

  10. Buckwalter J, Rosenberg L (1982) Electron microscopic studies of cartilage proteoglycans. Direct evidence for the variable length of the chondroitin sulfate-rich region of proteoglycan subunit core protein. J Biol Chem 257(16):9830–9839

    CAS  PubMed  Google Scholar 

  11. Farndale RW, Buttle DJ, Barrett AJ (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883(2):173–177

    Article  CAS  PubMed  Google Scholar 

  12. Kopesky P, Lee H-Y, Vanderploeg E, Kisiday J, Frisbie D, Plaas A, Ortiz C, Grodzinsky A (2010) Adult equine bone marrow stromal cells produce a cartilage-like ECM mechanically superior to animal-matched adult chondrocytes. Matrix Biol 29(5):427–438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Lee H-Y, Kopesky P, Plaas A, Sandy J, Kisiday J, Frisbie D, Grodzinsky A, Ortiz C (2010) Adult bone marrow stromal cell-based tissue-engineered aggrecan exhibits ultrastructure and nanomechanical properties superior to native cartilage. Osteoarthritis Cartilage 18(11):1477–1486

    Article  PubMed Central  PubMed  Google Scholar 

  14. Lee H-Y, Han L, Roughley P, Grodzinsky AJ, Ortiz C (2012) Age-related nanostructural and nanomechanical changes of individual human cartilage aggrecan monomers and their glycosaminoglycan side chains. J Struct Biol 181(3):264–273

    Article  PubMed Central  PubMed  Google Scholar 

  15. Dean D, Han L, Ortiz C, Grodzinsky AJ (2005) Nanoscale conformation and compressibility of cartilage aggrecan using microcontact printing and atomic force microscopy. Macromolecules 38(10):4047–4049

    Article  CAS  Google Scholar 

  16. Dean D, Han L, Grodzinsky AJ, Ortiz C (2006) Compressive nanomechanics of opposing aggrecan macromolecules. J Biomech 39:2555–2565

    Article  PubMed  Google Scholar 

  17. Seog J, Dean D, Plaas A, Wong-Palms S, Grodzinsky A, Ortiz C (2002) Direct measurement of glycosaminoglycan intermolecular interactions via high-resolution force spectroscopy. Macromolecules 35(14):5601–5615

    Article  CAS  Google Scholar 

  18. Seog J, Dean D, Rolauffs B, Wu T, Genzer J, Plaas AHK, Grodzinsky AJ, Ortiz C (2005) Nanomechanics of opposing glycosaminoglycan macromolecules. J Biomech 38(9):1789–1797

    Article  PubMed  Google Scholar 

  19. Dean D (2005) Modeling and measurement of intermolecular interaction forces between cartilage ecm macromolecules. Doctoral dissertation, Massachusetts Institute of Technology, retrieved from DSpace. http://dspace.mit.edu/handle/1721.1/30153

  20. Han L, Dean D, Ortiz C, Grodzinsky AJ (2007) Lateral nanomechanics of cartilage aggrecan macromolecules. Biophys J 92(4):1384–1398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Han L, Dean D, Daher LA, Grodzinsky AJ, Ortiz C (2008) Cartilage aggrecan can undergo self-adhesion. Biophys J 95(10):4862–4870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Wilbur JL, Kumar A, Kim E, Whitesides GM (1994) Microfabrication by microcontact printing of self‐assembled monolayers. Adv Mater 6(7-8):600–604

    Article  CAS  Google Scholar 

  23. Nia HT, Bozchalooi IS, Li Y, Han L, Hung H-H, Frank E, Youcef-Toumi K, Ortiz C, Grodzinsky A (2013) High-bandwidth AFM-based rheology reveals that cartilage is most sensitive to high loading rates at early stages of impairment. Biophys J 104(7):1529–1537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Han L (2007) Nanomechanics of cartilage extracellular matrix and macromolecules. Doctoral dissertation, Massachusetts Institute of Technology, retrieved from DSpace. http://dspace.mit.edu/handle/1721.1/42134

  25. Hutter JL, Bechhoefer J (1993) Calibration of atomic‐force microscope tips. Rev Sci Instrum 64:1868

    Article  CAS  Google Scholar 

  26. Nia HT, Han L, Li Y, Ortiz C, Grodzinsky A (2011) Poroelasticity of cartilage at the nanoscale. Biophys J 101(9):2304–2313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Nia HT, Han L, Bozchalooi IS, Roughley P, Youcef-Toumi K, Grodzinsky AJ, Ortiz C, Aggrecan nanoscale solid-fluid interactions are a primary determinant of cartilage dynamic mechanical properties (Submitted)

    Google Scholar 

  28. Nia HT, Bozchalooi IS, Youcef-Toumi K, Ortiz C, Grodzinsky AJ, Frank E (2013) High-frequency rheology system. US Patent 8,516,610

    Google Scholar 

  29. Nia HT (2013) Nanomechanics of cartilage at the matrix and molecular levels. Doctoral dissertation, Massachusetts Institute of Technology, retrieved from DSpace. http://dspace.mit.edu/handle/1721.1/81709?show=full

  30. Dean D, Seog J, Ortiz C, Grodzinsky AJ (2003) Molecular-level theoretical model for electrostatic interactions within polyelectrolyte brushes: applications to charged glycosaminoglycans. Langmuir 19(13):5526–5539

    Article  CAS  Google Scholar 

  31. Cohen B, Lai WM, Mow VC (1998) A transversely isotropic biphasic model for unconfined compression of growth plate and chondroepiphysis. J Biomech Eng 120:491

    Article  CAS  PubMed  Google Scholar 

  32. Grodzinsky AJ (2011) Fields, forces, and flows in biological systems, chapter 4. Garland Science, New York, pp 259–272

    Google Scholar 

  33. Nia HT, Han L, Soltani I, Youcef-Toumi K, Grodzinsky A, Ortiz C (2013) Frequency-dependent nanomechanical behavior of aggrecan demonstrates that aggrecan is the dominant constituent responsible for the frequency dependence of cartilage poroelasticity. Orthopedic Research Society, San Antonio, TX, 2013

    Google Scholar 

Download references

Acknowledgements

Supported by Whitaker Foundation Fellowship, National Science Foundation (grant CMMI-0758651), and National Institutes of Health (grant AR060331).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Grodzinsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nia, H.T., Ortiz, C., Grodzinsky, A. (2015). Aggrecan: Approaches to Study Biophysical and Biomechanical Properties. In: Balagurunathan, K., Nakato, H., Desai, U. (eds) Glycosaminoglycans. Methods in Molecular Biology, vol 1229. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1714-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1714-3_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1713-6

  • Online ISBN: 978-1-4939-1714-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics