Skip to main content

39 Innovative Metabolic Operations

  • Chapter
  • First Online:
Minimally Invasive Bariatric Surgery

Abstract

Bariatric surgery was developed with the aim of weight reduction. Success was defined only by excess weight loss. Other indices of resolution of metabolic comorbidities were reported but were mostly secondary. Several communications have reported that regardless of body mass index (BMI), complete or partial remission of type 2 diabetes mellitus (T2DM) is possible with “traditional gastrointestinal” operations such as the Roux-en-Y gastric bypass, biliopancreatic diversion, and the sleeve gastrectomy. These results mostly occur before weight loss, positioning metabolic surgery as a good tool for controlling the current T2DM epidemic. Surgery aimed mainly at the diseases such as diabetes and not weight loss are referred to as “metabolic surgery.” Metabolic surgery can effectively treat T2DM in individuals with any BMI, including those below 35 kg/m2. Concurrently, some new procedures were developed to treat patients that in theory do not need massive weight loss, focusing a pathophysiological approach to T2DM. Those new techniques, mainly duodenal-jejunal bypass, ileal transposition, and the endoscopic duodenal liner, are experimental procedures that showed good metabolic control with no relation to weight loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMI:

Body mass index

DJB:

Duodenal-jejunal bypass

DJBL:

Duodenal-jejunal bypass liner

DPP4:

Dipeptidyl-peptidase-4

FPG:

Fasting plasma glucose

GLP-1:

Glucagon-like peptide-1

IT:

Ileal transposition

LDL cholesterol:

Low-density-lipoprotein cholesterol

T2DM:

Type 2 diabetes mellitus

References

  1. Lebovitz HE. Science, clinical outcomes and the popularization of diabetes surgery. Curr Opin Endocrinol Diabetes Obes. 2012;19(5):359–66.

    Article  PubMed  Google Scholar 

  2. Murray P, Chune GW, Raghavan VA. Legacy effects from DCCT and UKPDS: what they mean and implications for future diabetes trials. Curr Atheroscler Rep. 2010;12(6):432–9.

    Article  PubMed  Google Scholar 

  3. Gaede P, Lund-Andersen H, Parving H-H, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358(6):580–91.

    Article  CAS  PubMed  Google Scholar 

  4. Stark Casagrande S, Fradkin JE, Saydah SH, Rust KF, Cowie CC. The prevalence of meeting A1C, blood pressure, and LDL goals among people with diabetes, 1988-2010. Diabetes Care. 2013;36(8):2271–9.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Grant RW, Buse JB, Meigs JB. University Health System Consortium (UHC) Diabetes Benchmarking Project Team. Quality of diabetes care in U.S. academic medical centers: low rates of medical regimen change. Diabetes Care. 2005;28(2):337–442.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Gregg EWE, Cheng YJY, Saydah SS, Cowie CC, Garfield SS, Geiss LL, et al. Trends in death rates among U.S. Adults with and without diabetes between 1997 and 2006: findings from the national health interview survey. Diabetes Care. 2013;35(6):1252–7.

    Article  Google Scholar 

  7. Arterburn DE, OÇonnnor PJ. A look ahead at the future of diabetes prevention and treatment. JAMA. 2012;308:2517–1519.

    Article  CAS  PubMed  Google Scholar 

  8. Carlsson LMS, Peltonen M, Ahlin S, Anveden Å, Bouchard C, Carlsson B, et al. Bariatric surgery and prevention of type 2 diabetes in swedish obese subjects. N Engl J Med. 2012;367(8):695–704.

    Article  CAS  PubMed  Google Scholar 

  9. Shah SS, Todkar JS, Shah PS, Cummings DE. Diabetes remission and reduced cardiovascular risk after gastric bypass in Asian Indians with body mass index. Surg Obes Relat Dis. 2010;6(4):332–8.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Cohen RV, Rubino F, Schiavon C, Cummings DE. Diabetes remission without weight loss after duodenal bypass surgery. SOARD. 2011;8(5):e66–8.

    Google Scholar 

  11. Cohen RV, Schiavon CA, Pinheiro Filho JC, Correa JLL. Laparoscopic bariatric surgery: new technologies, trends and perspectives. Rev Hosp Clin Fac Med Sao Paulo. 2003;58(5):1–8.

    Google Scholar 

  12. Geloneze B, Geloneze SR, Chaim E, Hirsch FF, Felici AC, Lambert G, et al. Metabolic surgery for non-obese type 2 diabetes: incretins, adipocytokines, and insulin secretion/resistance changes in a 1-year interventional clinical controlled study. Ann Surg. 2012;256(1):72–8.

    Article  PubMed  Google Scholar 

  13. DePaula AL, Macedo ALV, Rassi N, Machado CA, Schraibman V, Silva LQ, et al. Laparoscopic treatment of type 2 diabetes mellitus for patients with a body mass index less than 35. Surg Endosc. 2007;22(3):706–16.

    Article  Google Scholar 

  14. Cummings DE, Flum DR. Gastrointestinal surgery as a treatment for diabetes. JAMA. 2008;299(3):341–3.

    Article  CAS  PubMed  Google Scholar 

  15. Rubino F. Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis. Diabetes Care. 2008;31 Suppl 2:S290–6.

    Article  PubMed  Google Scholar 

  16. Rubino F, Cummings DE. Surgery: the coming of age of metabolic surgery. Nat Rev Endocrinol. 2012;8(12):702–4.

    Article  PubMed  Google Scholar 

  17. Sjöström L, Lindroos A-K, Peltonen M, Torgerson J, Bouchard C, Carlsson B, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351(26):2683–93.

    Article  PubMed  Google Scholar 

  18. Sjöström L, Narbro K, Sjöström CD, Karason K, Larsson B, Wedel H, et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007;357(8):741–52.

    Article  PubMed  Google Scholar 

  19. Schauer PR, Burguera B, Ikramuddin S, Cottam D, Gourash W, Hamad G, et al. Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus. Ann Surg. 2003;238(4):467–84. discussion 84–5.

    PubMed Central  PubMed  Google Scholar 

  20. Pories WJ, Swanson MS, MacDonald KG, Long SB, Morris PG, Brown BM, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg. 1995;222(3):339–50. discussion 350–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Schauer PR, Kashyap SR, Wolski K, Brethauer SA, Kirwan JP, Pothier CE, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366(17):1567–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Leccesi L, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366(17):1577–85.

    Article  CAS  PubMed  Google Scholar 

  23. Cohen RV, Pinheiro JC, Schiavon CA, Salles JE, Wajchenberg BL, Cummings DE. Effects of gastric bypass surgery in patients with type 2 diabetes and only mild obesity. Diabetes Care. 2012;35(7):1420–8.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Gill RS, Birch DW, Shi X, Sharma AM, Karmali S. Sleeve gastrectomy and type 2 diabetes mellitus: a systematic review. SOARD. 2011;6(6):707–13.

    Google Scholar 

  25. Dixon JB, O'Brien PE, Playfair J, Chapman L, Schachter LM, Skinner S, et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA. 2008;299(3):316–23.

    Article  CAS  PubMed  Google Scholar 

  26. Bagger JI, Knop FK, Lund A, Vestergaard H, Holst JJ, Vilsboll T. Impaired regulation of the incretin effect in patients with type 2 diabetes. J Clin Endocrinol Metab. 2011;96(3):737–45.

    Article  CAS  PubMed  Google Scholar 

  27. Dirksen C, Hansen DL, Madsbad S, Hvolris LE, Naver LS, Holst JJ, et al. Postprandial diabetic glucose tolerance is normalized by gastric bypass feeding as opposed to gastric feeding and is associated with exaggerated GLP-1 secretion: a case report. Diabetes Care. 2010;33(2):375–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Pilichiewicz AN, Chaikomin R, Brennan IM, Wishart JM, Rayner CK, Jones KL, et al. Load-dependent effects of duodenal glucose on glycemia, gastrointestinal hormones, antropyloroduodenal motility, and energy intake in healthy men. Am J Physiol Endocrinol Metab. 2007;293(3):E743–53.

    Article  CAS  PubMed  Google Scholar 

  29. Halperin F, Goldfine AB. Metabolic surgery for type 2 diabetes: efficacy and risks. Curr Opin Endocrinol Diabetes Obes. 2013;20(2):98–105.

    Article  CAS  PubMed  Google Scholar 

  30. Spies JW, Johnson CE, Wilson CS. Reconstruction of the ureter by means of bladder flaps. Exp Biol Med. 1933;30(4):425–6.

    Article  Google Scholar 

  31. Koopmans HS, Sclafani A. Control of body weight by lower gut signals. Int J Obes (Lond). 1981;5(5):491–5.

    CAS  Google Scholar 

  32. Koopmans HS, Sclafani A, Fichtner C, Aravich PF. The effects of ileal transposition on food intake and body weight loss in VMH-obese rats. Am J Clin Nutr. 1982;35(2):284–93.

    CAS  PubMed  Google Scholar 

  33. Sclafani A, Koopmans HS, Vasselli JR, Reichman M. Effects of intestinal bypass surgery on appetite, food intake, and body weight in obese and lean rats. Am J Physiol. 1978;234(4):E389–98.

    CAS  PubMed  Google Scholar 

  34. De Paula AL, Stival AR, Macedo A, Ribamar J, Mancini M, Halpern A, et al. Prospective randomized controlled trial comparing 2 versions of laparoscopic ileal interposition associated with sleeve gastrectomy for patients with type 2 diabetes with BMI 21–34 kg/m2. SOARD. 2011;6(3):296–304.

    Google Scholar 

  35. DePaula AL, Macedo ALV, Schraibman V, Mota BR, Vencio S. Hormonal evaluation following laparoscopic treatment of type 2 diabetes mellitus patients with BMI 20–34. Surg Endosc. 2008;23(8):1724–32.

    Article  PubMed  Google Scholar 

  36. Mason EE. Ileal transposition and enteroglucagon/GLP-1 in obesity (and diabetic?) surgery. Obes Surg. 2003;9(3):223–8.

    Article  Google Scholar 

  37. Strader AD. Ileal transposition provides insight into the effectiveness of gastric bypass surgery. Physiol Behav. 2006;88(3):277–82.

    Article  CAS  PubMed  Google Scholar 

  38. Strader AD. Weight loss through ileal transposition is accompanied by increased ileal hormone secretion and synthesis in rats. Am J Physiol Endocrinol Metab. 2005;288(2):E447–53.

    Article  CAS  PubMed  Google Scholar 

  39. Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest. 1998;101:515–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Scrocchi LA, Brown TJ, MaClusky N, Brubaker PL. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat Med. 1996;2(11):1254–8.

    Article  CAS  PubMed  Google Scholar 

  41. Turton MD, O'shea D, Gunn I, Beak SA, Edwards C. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature. 1996;379(6560):69–72.

    Article  CAS  PubMed  Google Scholar 

  42. Yeğen BÇ, Bozkurt A, Coşkun T. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am J Physiol. 1997;273(4 Pt 1):G92–7.

    Google Scholar 

  43. Tinoco A, El-Kadre L, Aquiar L, Tinoco R, Savassi-Rocha P. Short-term and mid-term control of type 2 diabetes mellitus by laparoscopic sleeve gastrectomy with ileal interposition. World J Surg. 2011;35(10):2238–44.

    Article  PubMed  Google Scholar 

  44. Vilsboll T, Holst JJ. Incretins, insulin secretion and Type 2 diabetes mellitus. Diabetologia. 2004;47(3):357–66.

    Article  CAS  PubMed  Google Scholar 

  45. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2131–57.

    Article  CAS  PubMed  Google Scholar 

  46. Ahrén B, Holst JJ, Mari A. Characterization of GLP-1 effects on beta-cell function after meal ingestion in humans. Diabetes Care. 2003;26(10):2860–4.

    Article  PubMed  Google Scholar 

  47. de Paula AL, Macedo ALV, Prudente AS, Queiroz L, Schraibman V, Pinus J. Laparoscopic sleeve gastrectomy with ileal interposition (“neuroendocrine brake”)—pilot study of a new operation. SOARD. 2006;2(4):464–7.

    Google Scholar 

  48. Donglei Z, Liesheng L, Xun J, Chenzhu Z, Weixing D. Effects and mechanism of duodenal-jejunal bypass and sleeve gastrectomy on GLUT2 and glucokinase in diabetic Goto-Kakizaki rats. Eur J Med Res. 2012;17:15.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Stefater MA, Wilson-Perez HE, Chambers AP, Sandoval DA, Seeley RJ. All bariatric surgeries are not created equal: insights from mechanistic comparisons. Endocr Rev. 2012;33(4):595–622.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. DePaula AL, Macedo ALV, Rassi N, Vencio S, Machado CA, Mota BR, et al. Laparoscopic treatment of metabolic syndrome in patients with type 2 diabetes mellitus. Surg Endosc. 2008;22(12):2670–8.

    Article  CAS  PubMed  Google Scholar 

  51. DePaula AL, Stival AR, DePaula CCL, Halpern A, Vencio S. Surgical treatment of type 2 diabetes in patients with BMI below 35: mid-term outcomes of the laparoscopic ileal interposition associated with a sleeve gastrectomy in 202 consecutive cases. J Gastrointest Surg. 2012;16(5):967–76.

    Article  PubMed  Google Scholar 

  52. Kota SK, Ugale S, Gupta N, Naik V, Kumar KVSH, Modi KD. Ileal interposition with sleeve gastrectomy for treatment of type 2 diabetes mellitus. Indian J Endocrinol Metab. 2012;16(4):589–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Kota SK, Ugale S, Gupta N, Modi KD. Laparoscopic ileal interposition with diverted sleeve gastrectomy for treatment of type 2 diabetes. Diabetes Metab Syndr. 2012;6(3):125–31.

    Article  PubMed  Google Scholar 

  54. DePaula AL, Stival AR, Halpern A, Vencio S. Surgical treatment of morbid obesity: mid-term outcomes of the laparoscopic ileal interposition associated to a sleeve gastrectomy in 120 patients. Obes Surg. 2010;21(5):668–75.

    Article  Google Scholar 

  55. Paula AL, Stival AR, Halpern A, DePaula CCL, Mari A, Muscelli E, et al. Improvement in insulin sensitivity and Β-cell function following ileal interposition with sleeve gastrectomy in type 2 diabetic patients: potential mechanisms. J Gastrointest Surg. 2011;15(8):1344–53.

    Article  PubMed  Google Scholar 

  56. Rubino F, Marescaux J. Effect of duodenal–jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg. 2004;239(1):1–11.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Breen DM, Rasmussen BA, Kokorovic A, Wang R, Cheung GWC, Lam TKT. Jejunal nutrient sensing is required for duodenal-jejunal bypass surgery to rapidly lower glucose concentrations in uncontrolled diabetes. Nat Med. 2012;18(6):950–5.

    Article  CAS  PubMed  Google Scholar 

  58. Salinari S, Debard C, Bertuzzi A, Durand C, Zimmet P, Vidal H, et al. Jejunal proteins secreted by db/db mice or insulin-resistant humans impair the insulin signaling and determine insulin resistance. PLoS One. 2013;8(2):e56258.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Cohen RV, Schiavon CA, Pinheiro JS, Correa JL, Rubino F. Duodenal-jejunal bypass for the treatment of type 2 diabetes in patients with body mass index of 22-34 kg/m2: a report of 2 cases. SOARD. 2007;3(2):195–7.

    Google Scholar 

  60. Cohen R, Caravatto PP, Correa JL, Noujaim P, Petry TZ, Salles JE, et al. Glycemic control after stomach-sparing duodenal-jejunal bypass surgery in diabetic patients with low body mass index. SOARD. 2012;8(4):375–80.

    Google Scholar 

  61. Klein S, Fabbrini E, Patterson BW, Polonsky KS, Schiavon CA, Correa JL, et al. Moderate effect of duodenal-jejunal bypass surgery on glucose homeostasis in patients with type 2 diabetes. Obesity (Silver Spring). 2009;20(6):1266–72.

    Article  Google Scholar 

  62. Geloneze B, Geloneze SR, Fiori C, Stabe C, Tambascia MA, Chaim EA, et al. Surgery for nonobese type 2 diabetic patients: an interventional study with duodenal-jejunal exclusion. Obes Surg. 2009;19(8):1077–83.

    Article  PubMed  Google Scholar 

  63. Pinheiro JS, Schiavon CA, Pereira PB, Correa JL, Noujaim P, Cohen R. Long-long limb Roux-en-Y gastric bypass is more efficacious in treatment of type 2 diabetes and lipid disorders in super-obese patients. SOARD. 2008;4(4):521–5. Discussion 526–7.

    Google Scholar 

  64. Cummings DE, Shannon MH. Ghrelin and gastric bypass: is there a hormonal contribution to surgical weight loss? J Clin Endocrinol Metab. 2003;88(7):2999–3002.

    Article  CAS  PubMed  Google Scholar 

  65. Chopin LK, Seim I, Walpole CM, Herington AC. The ghrelin axis–does it have an appetite for cancer progression? Endocr Rev. 2012;33(6):849–91.

    Article  CAS  PubMed  Google Scholar 

  66. Ramos AC, Neto MG, de Souza YM, Galvão M. Laparoscopic duodenal–jejunal exclusion in the treatment of type 2 diabetes mellitus in patients with BMI. Obes Surg. 2009;19(3):307–12.

    Article  PubMed  Google Scholar 

  67. Kasama K, Tagaya N, Kanehira E, Oshiro T, Seki Y, Kinouchi M, et al. Laparoscopic sleeve gastrectomy with duodenojejunal bypass: technique and preliminary results. Obes Surg. 2009;19(10):1341–5.

    Article  PubMed  Google Scholar 

  68. Praveen Raj P, Kumaravel R, Chandramaliteeswaran C, Vaithiswaran V, Palanivelu C. Laparoscopic duodenojejunal bypass with sleeve gastrectomy: preliminary results of a prospective series from India. Surg Endosc. 2011;26(3):688–92.

    Article  PubMed  Google Scholar 

  69. Escalona A, Yáñez R, Pimentel F, Galvão M, Ramos AC, Turiel D, et al. Initial human experience with restrictive duodenal-jejunal bypass liner for treatment of morbid obesity. SOARD. 2010;6(2):126–31.

    Google Scholar 

  70. Escalona A, Pimentel F, Sharp A, Becerra P, Slako M, Turiel D, et al. Weight loss and metabolic improvement in morbidly obese subjects implanted for 1 year with an endoscopic duodenal-jejunal bypass liner. Ann Surg. 2012;255(6):1080–5.

    Article  PubMed  Google Scholar 

  71. Cohen RV, Neto MG, Correa JL, Sakai P, Martins B, Schiavon CA, et al. A pilot study of the duodenal-jejunal bypass liner in low body mass index type 2 diabetes. J Clin Endocrinol Metab. 2013;98(2):E279–82.

    Article  CAS  PubMed  Google Scholar 

  72. Jiao J, Bae EJ, Bandyopadhyay G, Oliver J, Marathe C, Chen M, et al. Restoration of euglycemia after duodenal bypass surgery is reliant on central and peripheral inputs in Zucker fa/fa rats. Diabetes. 2013;62(4):1074–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Santoro S, Castro LC, Velhote MCP, Malzoni CE, Klajner S, Castro LP, et al. Sleeve gastrectomy with transit bipartition: a potent intervention for metabolic syndrome and obesity. Ann Surg. 2012;256(1):104–10.

    Article  PubMed  Google Scholar 

  74. Shukla AP, Moreira M, Dakin G, Pomp A, Brillon D, Sinha N, et al. Medical versus surgical treatment of type 2 diabetes: the search for level 1 evidence. Soard. 2012;8(4):476–82.

    Google Scholar 

  75. Rubino F, Kaplan LM, Schauer PR, Cummings DE. The diabetes surgery summit consensus conference. Ann Surg. 2010;251(3):399–405.

    Article  PubMed  Google Scholar 

  76. ADA. Summary of revisions for the 2009 clinical practice recommendations. Diabetes Care. 2009;32 Suppl 1:S3–5.

    Google Scholar 

  77. Dixon JB, Zimmet P, Alberti KG, Rubino F. Bariatric surgery: an IDF statement for obese Type 2 diabetes. Diabet Med. 2011;28(6):628–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Cohen M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cohen, R., Caravatto, P.P., Petry, T. (2015). 39 Innovative Metabolic Operations. In: Brethauer, S., Schauer, P., Schirmer, B. (eds) Minimally Invasive Bariatric Surgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1637-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1637-5_39

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1636-8

  • Online ISBN: 978-1-4939-1637-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics