Skip to main content

Protocol for Cutaneous Wound Healing Assay in a Murine Model

  • Protocol
  • First Online:
Stem Cells and Tissue Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1210))

Abstract

Cutaneous wound healing assay is important to address many key questions including (1) migration ability of different cells; (2) communication between the different cell types such as keratinocytes, fibroblasts, and immune cells; (3) understanding the cell-autonomous and non-cell-autonomous function(s) of the different cells; and (4) gene regulation in healing processes. Wound healing studies can be used to test new treatment modalities, function of new drugs/compounds, and stem cell-based therapies on the different stages of healing and for accelerating wound healing in patients with compromised healing. In this chapter, we have described a simple step-by-step protocol to generate full-thickness cutaneous wounds in the dorsal skin of mice, followed by collecting the post-wounding biopsied materials on specific days for histological and immunohistochemical analyses and for RNA and protein extractions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fuchs E, Raghavan S (2002) Getting under the skin of epidermal morphogenesis. Nat Rev Genet 3:199–209

    Article  CAS  PubMed  Google Scholar 

  2. Lippens S, Denecker G, Ovaere P, Vandenabeele P, Declercq W (2005) Death penalty for keratinocytes: apoptosis versus cornification. Cell Death Differ 12(Suppl 2):1497–1508

    Article  CAS  PubMed  Google Scholar 

  3. Proksch E, Brandner JM, Jensen JM (2008) The skin: an indispensable barrier. Exp Dermatol 17(12):1063–1072

    Article  PubMed  Google Scholar 

  4. Blanpain C, Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10:207–217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Wong VW, Gurtner GC, Longaker MT (2013) Wound healing: a paradigm for regeneration. Mayo Clin Proc 88:1022–1031

    Article  PubMed  Google Scholar 

  6. Zaja-Milatovic S, Richmond A (2008) CXC chemokines and their receptors: a case for a significant biological role in cutaneous wound healing. Histol Histopathol 23:1399–1407

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Guo S, Dipietro LA (2010) Factors affecting wound healing. J Dent Res 89:219–229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Bellavia G, Fasanaro P, Melchionna R, Capogrossi MC, Napolitano M (2014) Transcriptional control of skin reepithelialization. J Dermatol Sci 73(1):3–9

    Article  CAS  PubMed  Google Scholar 

  9. Greaves NS, Ashcroft KJ, Baguneid M, Bayat A (2013) Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. J Dermatol Sci 72(3):206–217

    Article  CAS  PubMed  Google Scholar 

  10. Patel GK, Wilson CH, Harding KG, Finlay AY, Bowden PE (2006) Numerous keratinocyte subtypes involved in wound re-epithelialization. J Invest Dermatol 126:497–502

    Article  CAS  PubMed  Google Scholar 

  11. Scheid A, Meuli M, Gassmann M, Wenger RH (2000) Genetically modified mouse models in studies on cutaneous wound healing. Exp Physiol 85:687–704

    Article  CAS  PubMed  Google Scholar 

  12. Brakenhielm E, Cao R, Cao Y (2001) Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes. FASEB J 15:1798–1800

    CAS  PubMed  Google Scholar 

  13. Kung HN, Yang MJ, Chang CF, Chau YP, Lu KS (2008) In vitro and in vivo wound healing-promoting activities of beta-lapachone. Am J Physiol Cell Physiol 295:C931–C943

    Article  CAS  PubMed  Google Scholar 

  14. Negrao R, Costa R, Duarte D, Gomes TT, Coelho P, Guimaraes JT, Guardao L, Azevedo I, Soares R (2012) Xanthohumol-supplemented beer modulates angiogenesis and inflammation in a skin wound healing model. Involvement of local adipocytes. J Cell Biochem 113:100–109

    Article  CAS  PubMed  Google Scholar 

  15. Stipcevic T, Piljac A, Piljac G (2006) Enhanced healing of full-thickness burn wounds using di-rhamnolipid. Burns 32:24–34

    Article  PubMed Central  PubMed  Google Scholar 

  16. Squarize CH, Castilho RM, Bugge TH, Gutkind JS (2010) Accelerated wound healing by mTOR activation in genetically defined mouse models. PLoS One 5:e10643

    Article  PubMed Central  PubMed  Google Scholar 

  17. Chigurupati S, Mughal MR, Chan SL, Arumugam TV, Baharani A, Tang SC, Yu QS, Holloway HW, Wheeler R, Poosala S, Greig NH, Mattson MP (2010) A synthetic uric acid analog accelerates cutaneous wound healing in mice. PLoS One 5:e10044

    Article  PubMed Central  PubMed  Google Scholar 

  18. Cho CH, Sung HK, Kim KT, Cheon HG, Oh GT, Hong HJ, Yoo OJ, Koh GY (2006) COMP-angiopoietin-1 promotes wound healing through enhanced angiogenesis, lymphangiogenesis, and blood flow in a diabetic mouse model. Proc Natl Acad Sci U S A 103:4946–4951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kim SO, Lee HS, Ahn K, Park K (2013) COMP-angiopoietin-1 promotes cavernous angiogenesis in a type 2 diabetic rat model. J Korean Med Sci 28:725–730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Emmerson E, Campbell L, Davies FC, Ross NL, Ashcroft GS, Krust A, Chambon P, Hardman MJ (2012) Insulin-like growth factor-1 promotes wound healing in estrogen-deprived mice: new insights into cutaneous IGF-1R/ERalpha cross talk. J Invest Dermatol 132:2838–2848

    Article  CAS  PubMed  Google Scholar 

  21. Jarvinen TA, Ruoslahti E (2010) Target-seeking antifibrotic compound enhances wound healing and suppresses scar formation in mice. Proc Natl Acad Sci U S A 107:21671–21676

    Article  PubMed Central  PubMed  Google Scholar 

  22. Negrao R, Costa R, Duarte D, Taveira Gomes T, Mendanha M, Moura L, Vasques L, Azevedo I, Soares R (2010) Angiogenesis and inflammation signaling are targets of beer polyphenols on vascular cells. J Cell Biochem 111:1270–1279

    Article  CAS  PubMed  Google Scholar 

  23. Banerjee J, Chan YC, Sen CK (2011) MicroRNAs in skin and wound healing. Physiol Genomics 43:543–556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Banerjee J, Sen CK (2013) MicroRNAs in skin and wound healing. Methods Mol Biol 936:343–356

    Article  CAS  PubMed  Google Scholar 

  25. Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61:1329–1337

    Article  CAS  PubMed  Google Scholar 

  26. Jensen KB, Collins CA, Nascimento E, Tan DW, Frye M, Itami S, Watt FM (2009) Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 4:427–439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH, Barker N, van de Wetering M, van den Born M, Begthel H, Vries RG, Stange DE, Toftgard R, Clevers H (2010) Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327:1385–1389

    Article  CAS  PubMed  Google Scholar 

  28. Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, Cotsarelis G (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11:1351–1354

    Article  CAS  PubMed  Google Scholar 

  29. Jaks V, Barker N, Kasper M, van Es JH, Snippert HJ, Clevers H, Toftgard R (2008) Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet 40:1291–1299

    Article  CAS  PubMed  Google Scholar 

  30. Levy V, Lindon C, Zheng Y, Harfe BD, Morgan BA (2007) Epidermal stem cells arise from the hair follicle after wounding. FASEB J 21:1358–1366

    Article  CAS  PubMed  Google Scholar 

  31. Nowak JA, Polak L, Pasolli HA, Fuchs E (2008) Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell 3:33–43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Ashcroft GS, Yang X, Glick AB, Weinstein M, Letterio JL, Mizel DE, Anzano M, Greenwell-Wild T, Wahl SM, Deng C, Roberts AB (1999) Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol 1:260–266

    Article  CAS  PubMed  Google Scholar 

  33. Owens P, Engelking E, Han G, Haeger SM, Wang XJ (2010) Epidermal Smad4 deletion results in aberrant wound healing. Am J Pathol 176:122–133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Hudson LG, Newkirk KM, Chandler HL, Choi C, Fossey SL, Parent AE, Kusewitt DF (2009) Cutaneous wound reepithelialization is compromised in mice lacking functional Slug (Snai2). J Dermatol Sci 56:19–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Sano S, Itami S, Takeda K, Tarutani M, Yamaguchi Y, Miura H, Yoshikawa K, Akira S, Takeda J (1999) Keratinocyte-specific ablation of Stat3 exhibits impaired skin remodeling, but does not affect skin morphogenesis. EMBO J 18:4657–4668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Hansen SL, Myers CA, Charboneau A, Young DM, Boudreau N (2003) HoxD3 accelerates wound healing in diabetic mice. Am J Pathol 163:2421–2431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Ashcroft GS, Mills SJ (2002) Androgen receptor-mediated inhibition of cutaneous wound healing. J Clin Invest 110:615–624

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Liang X, Bhattacharya S, Bajaj G, Guha G, Wang Z, Jang HS, Leid M, Indra AK, Ganguli-Indra G (2012) Delayed cutaneous wound healing and aberrant expression of hair follicle stem cell markers in mice selectively lacking Ctip2 in epidermis. PLoS One 7:e29999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Jaks V, Kasper M, Toftgard R (2010) The hair follicle-a stem cell zoo. Exp Cell Res 316:1422–1428

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank Xiaobo Liang and Shreya Bhattacharya for the images. I would like to also thank Arup K. Indra for critical reading of the review article. This work was supported by NIH grant 5R01AR056008-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gitali Ganguli-Indra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ganguli-Indra, G. (2014). Protocol for Cutaneous Wound Healing Assay in a Murine Model. In: Kioussi, C. (eds) Stem Cells and Tissue Repair. Methods in Molecular Biology, vol 1210. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1435-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1435-7_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1434-0

  • Online ISBN: 978-1-4939-1435-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics