Skip to main content

Interplay Between Sibling Bacterial Colonies

  • Chapter
  • First Online:
The Physical Basis of Bacterial Quorum Communication

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Bacteria in the wild are frequently exposed to harsh conditions, the sources of which include, but are not limited to, a lack of available nutrients, overcrowding and space limitations, the presence of enemies, and extreme environmental conditions, such as high temperatures and dryness. Their responses to stress can consist of radical behaviors, such as the deadly competition often observed between individuals of the same species [1–5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Be’er A et al (2009) Deadly competition between sibling bacterial colonies. Proc Natl Acad Sci U S A 106:428–433

    Article  ADS  Google Scholar 

  2. Be’er A et al (2010) Lethal protein produced in response to competition between sibling bacterial colonies. Proc Natl Acad Sci U S A 107:6258–6263

    Article  ADS  Google Scholar 

  3. Be’er A et al (2011) Surviving bacterial sibling rivalry: inducible and reversible phenotypic switching in Paenibacillus dendritiformis. MBio 2:e00069-11. doi:10.1128/mBio.00069-11

    Google Scholar 

  4. González-Pastor JE et al (2003) Cannibalism by sporulating bacteria. Science 301:510–513

    Article  ADS  Google Scholar 

  5. Hávarstein LS et al (2006) New insights into pneumococcal fratricide: relationship to clumping and identification of a novel immunity factor. Mol Microbiol 59:1297–1307

    Article  Google Scholar 

  6. Vicsek T, Zafeiris A (2012) Collective motion. Phys Rep 517:71–140

    Article  ADS  Google Scholar 

  7. Eldar A (2011) Social conflict drives the evolutionary divergence of quorum sensing. Proc Natl Acad Sci U S A 108:13635–13640

    Article  ADS  Google Scholar 

  8. Sirota-Madi A et al (2010) Genome sequence of the pattern forming Paenibacillus vortex bacterium reveals potential for thriving in complex environments. BMC Genomics 11:1471–2164

    Article  Google Scholar 

  9. Ben-Jacob E et al (1994) Generic modeling of cooperative growth patterns in bacterial colonies. Nature 368:46–49

    Article  ADS  Google Scholar 

  10. Ben-Jacob E et al (1995) Complex bacterial patterns. Nature 373:566–567

    Article  ADS  Google Scholar 

  11. Ben-Jacob E et al (1998) Cooperative organization of bacterial colonies: from genotype to morphotype. Annu Rev Microbiol 52:779–806

    Article  Google Scholar 

  12. Ben-Jacob E (2003) Bacterial self-organization: co-enhancement of complexification and adaptability in a dynamic environment. Philos Trans A Math Phys Eng Sci 361:1283–1312

    Article  MathSciNet  ADS  Google Scholar 

  13. Ben-Jacob E et al (2000) Cooperative self-organization of microorganism. Adv Phys 49: 395–554

    Google Scholar 

  14. Ben-Jacob E, Levine H (2006) Self-engineering capabilities of bacteria. J R Soc Interface 3:197–214

    Article  Google Scholar 

  15. Be’er A et al (2009) Paenibacillus dendritiformis bacterial colony growth depends on surfactant but not on bacterial motion. J Bacteriol 191:5758–5764

    Article  Google Scholar 

  16. Zhang HP et al (2009) Swarming dynamics in bacterial colonies. Europhys Lett 87:1–5

    Google Scholar 

  17. Balaban NQ et al (2004) Bacterial persistence as a phenotypic switch. Science 305:1622–1625

    Article  ADS  Google Scholar 

  18. Roth D et al (2013) Identification and characterization of a highly motile and antibiotic refractory subpopulation involved in the expansion of swarming colonies of Paenibacillus vortex. Environ Microbiol 15:2532–2544

    Article  Google Scholar 

  19. Ben-Jacob E et al (2004) Bacterial linguistic communication and social intelligence. Trends Microbiol 12:366–372

    Article  Google Scholar 

  20. Ben-Jacob E et al (1995) Cooperative formation of chiral patterns during growth of bacterial colonies. Phys Rev Lett 75:2899–2902

    Article  ADS  Google Scholar 

  21. Sirota-Madi A et al (2012) Genome sequence of the pattern-forming social bacterium Paenibacillus dendritiformis C454 chiral morphotype. J Bacteriol 194:2127–2128

    Article  Google Scholar 

  22. Ben-Jacob E et al (2001) Modeling branching and chiral colonial patterning of lubricating bacteria. In: Maini PK, Othmer HG (eds) Mathematical models for biological pattern formation. Springer Science Business Media, New York

    Google Scholar 

  23. Fujikawa H, Matsushita M (1991) Bacterial fractal growth in the concentration field of nutrient. J Phys Soc Jpn 60:88–94

    Article  ADS  Google Scholar 

  24. Wakita J et al (1994) Experimental investigation on the validity of population dynamics approach to bacterial colony formation. J Phys Soc Jpn 63:1205–1211

    Article  ADS  Google Scholar 

  25. Deepak N et al (2007) Segregation of fractal aggregates grown from two seeds. Phys Rev E 75:1–5

    Google Scholar 

  26. Gibbs KA et al (2008) Genetic determinants of self identity and social recognition in bacteria. Science 321:256–259

    Article  ADS  Google Scholar 

  27. Ben-Jacob E et al (2000) Bacterial cooperative organization under antibiotic stress. Physica A 282:247–282

    Article  ADS  Google Scholar 

  28. Golding I et al (1998) Studies of bacterial branching growth using reaction–diffusion models for colonial development. Physica A 260:510–554

    Article  ADS  Google Scholar 

  29. Golding I, Ben-Jacob E (2001) The artistry of bacterial colonies and the antibiotic crisis. In: Reguera D, Bonilla LL, Rubi JM (eds) Coherent structures in complex systems, vol 567, Lecture notes in physics. Springer, Berlin

    Chapter  Google Scholar 

  30. Be’er A et al (2013) Periodic reversals in Paenibacillus dendritiformis swarming. J Bacteriol 195:2709–2717

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avraham Be’er .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Be’er, A., Benisty, S., Ariel, G., Ben-Jacob, E. (2015). Interplay Between Sibling Bacterial Colonies. In: Hagen, S. (eds) The Physical Basis of Bacterial Quorum Communication. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1402-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1402-9_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1401-2

  • Online ISBN: 978-1-4939-1402-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics