Skip to main content

Abstract

Synthetic lethality describes the phenomenon in which non-lethal genetic mutations are innocuous when they occur individually, but which lead to cellular lethality when they occur together. Such a concept has been exploited for the development of novel molecularly targeted agents in oncology. For example, tumor cells with deleterious BRCA1/2 gene mutations have non-functioning homologous recombination (HR) and consequent defective DNA double-strand break repair. This has been shown to result in exquisitely sensitive cell killing through the inhibition of poly(ADP-ribose) polymerase (PARP). Multiple novel antitumor agents targeting PARP are currently at different stages of preclinical and clinical development. Promising results in patients harboring germline mutations in BRCA1/2 genes have been observed in clinical trials, including patients with castration-resistant prostate cancer (CRPC). Although these mutations are known to be a risk factor for the development of prostate cancer and are predictors of a more aggressive phenotype, their prevalence among patients with prostate cancer is low. However, in view of the relevance of DNA repair systems in prostate cancer biology and emerging data supporting the role of this therapeutic strategy in certain sporadic cancers bearing other HR defects, there is now great interest in identifying and validating other predictive biomarkers to widen the role of PARP inhibitors in the treatment of CRPC. This chapter reviews the biological rational and current clinical evidence for the use of PARP inhibitors for the treatment of CRPC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernstein C, Bernstein H, Payne CM, Garewal H. DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res. 2002;511(2):145–78.

    Article  CAS  PubMed  Google Scholar 

  2. Dantzer F, Amé J-C, Schreiber V, Nakamura J, Ménissier-de Murcia J, de Murcia G. Poly(ADP-ribose) polymerase-1 activation during DNA damage and repair. Methods Enzymol. 2006;409:493–510.

    Article  CAS  PubMed  Google Scholar 

  3. Otto H, Reche P, Bazan F, Dittmar K, Haag F, Koch-Nolte F. In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs). BMC Genomics. 2005;6:139.

    Article  PubMed Central  PubMed  Google Scholar 

  4. D’Amours D, Desnoyers S, D’Silva I, Poirier GG. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J. 1999;342:249–68.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Schultz N, Lopez E, Saleh-Gohari N, Helleday T. Poly(ADP-ribose) polymerase (PARP-1) has a controlling role in homologous recombination. Nucliec Acids Res. 2003;31(17):4959–64.

    Article  CAS  Google Scholar 

  6. Murai J, Huang SN, Das BB. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 2012;72:5588–99.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Patel AG, Sarkaria JN, Kaufmann SH. Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc Natl Acad Sci U S A. 2011;108(8):3406–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Dantzer F, Schreiber V, Niedergang C, Trucco C, Flatter E, De La Rubia G, et al. Involvement of poly(ADP-ribose) polymerase in base excision repair. Biochimie. 1999;81(1–2):69–75.

    Article  CAS  PubMed  Google Scholar 

  9. Farmer H, McCabe N, Lord CJ, Tutt ANJ, Johnson D, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–21.

    Article  CAS  PubMed  Google Scholar 

  10. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434(7035):913–7.

    Article  CAS  PubMed  Google Scholar 

  11. Dobzhansky T. Genetics of natural populations Xiii recombination and variability in populations of drosophila pseudoobscura. Genetics. 1946;31(3):269–90.

    PubMed Central  Google Scholar 

  12. Mccabe N, Turner NC, Lord CJ, Kluzek K, Białkowska A, Swift S, et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to Poly(ADP-Ribose)Polymerase inhibition. Cancer Res. 2006;16:8109–15.

    Article  Google Scholar 

  13. Donawho CK, Luo Y, Luo Y, Penning TD, Bauch JL, Bouska JJ, et al. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res. 2007;13(9):2728–37.

    Article  CAS  PubMed  Google Scholar 

  14. Calabrese CR, Almassy R, Barton S, Batey MA, Calvert AH, Canan-Koch S, et al. Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J Natl Cancer Inst. 2004;96(1):56–67.

    Article  CAS  PubMed  Google Scholar 

  15. Schiewer MJ, Goodwin JF, Han S, Brenner JC, Augello MA, Dean JL, et al. Dual roles of PARP-1 promote cancer growth and progression. Cancer Discov. 2012;2(12):1134–49.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Brenner JC, Ateeq B, Li Y, Yocum AK, Cao Q, Asangani I, et al. Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell. 2011;19(5):664–78. Elsevier Inc.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Chatterjee P, Choudhary GS, Sharma A, Singh K, Heston WD, Ciezki J, et al. PARP inhibition sensitizes to low dose-rate radiation TMPRSS2-ERG fusion gene-expressing and PTEN-deficient prostate cancer cells. PLoS One. 2013;8(4):e60408.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Venkitaraman AR. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell. 2002;108(2): 171–82.

    Article  CAS  PubMed  Google Scholar 

  19. Yoshida K, Miki Y. Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Sci. 2004; 95(11):866–71.

    Article  CAS  PubMed  Google Scholar 

  20. Lord CJ, Garrett MD, Ashworth A. Targeting the double-strand DNA break repair pathway as a therapeutic strategy. Clin Cancer Res. 2006;12(15):4463–8.

    Article  CAS  PubMed  Google Scholar 

  21. Castro E, Goh C, Olmos D, Saunders E, Leongamornlert D, Tymrakiewicz M, et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol. 2013;31:1748–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Gallagher DJ, Gaudet MM, Pal P, Kirchhoff T, Balistreri L, Vora K, et al. Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin Cancer Res. 2010;16(7):2115–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Gallagher DJ, Cronin AM, Milowsky MI, Morris MJ, Bhatia J, Scardino PT, et al. Germline BRCA mutation does not prevent response to taxane-based therapy for the treatment of castration-resistant prostate cancer. BJU Int. 2012;109(5):713–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. The Breast Cancer Linkage Consortium. Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst. 1999;91(15):1310–6.

    Article  Google Scholar 

  25. Leongamornlert D, Mahmud N, Tymrakiewicz M, Saunders E, Dadaev T, Castro E, et al. Germline BRCA1 mutations increase prostate cancer risk. Br J Cancer. 2012;106(10):1697–701.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Francis JC, McCarthy A, Thomsen MK, Ashworth A, Swain A. Brca2 and Trp53 deficiency cooperate in the progression of mouse prostate tumourigenesis. PLoS Genet. 2010;6(6):e1000995.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Ibrahim YH, García-García C, Serra V, He L, Torres-Lockhart K, Prat A, et al. PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition. Cancer Discov. 2012;2(11):1036–47.

    Article  CAS  PubMed  Google Scholar 

  28. Juvekar A, Burga LN, Hu H, Lunsford EP, Ibrahim YH, Balmañà J, et al. Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer. Cancer Discov. 2012;2(11):1048–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Xiang T, Ohashi A, Huang Y, Pandita TK, Ludwig T, Powell SN, et al. Negative regulation of AKT activation by BRCA1. Cancer Res. 2008;68(24):10040–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Fong PCP, Boss DDS, Yap TTA, Tutt A, Wu P, Mergui-Roelvink M, et al. Inhibition of poly (ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361(2):123–34.

    Article  CAS  PubMed  Google Scholar 

  31. Kaye SB, Lubinski J, Matulonis U, Ang JE, Gourley C, Karlan BY, et al. Phase II, open-label, randomized, multicenter study comparing the efficacy and safety of olaparib, a poly (ADP-ribose) polymerase inhibitor, and pegylated liposomal doxorubicin in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer. J Clin Oncol. 2012;30(4):372–9.

    Article  CAS  PubMed  Google Scholar 

  32. Ledermann J, Harter P, Gourley C, Friedlander M, Vergote I, Rustin G, et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N Engl J Med. 2012;366(15):1382–92.

    Article  CAS  PubMed  Google Scholar 

  33. Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet. 2010;376(9737):235–44.

    Article  CAS  PubMed  Google Scholar 

  34. Fong PC, Yap T, Boss DS, Carden CP, Mergui-Roelvink M, Gourley C, et al. Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol. 2010;28(15):2512–9.

    Article  CAS  PubMed  Google Scholar 

  35. Audeh MW, Carmichael J, Penson RT, Friedlander M, Powell B, Bell-McGuinn KM, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet. 2010; 376(9737):245–51.

    Article  CAS  PubMed  Google Scholar 

  36. Gelmon K, Tischkowitz M, Mackay H, Swenerton K, Robidoux A, Tonkin K, et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 2011;12(9):852–61. Elsevier Ltd.

    Article  CAS  PubMed  Google Scholar 

  37. Olaussen KA, Dunant A, Fouret P, Brambilla E, André F, Haddad V, et al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med. 2006;355(10):983–91.

    Article  CAS  PubMed  Google Scholar 

  38. Kote-Jarai Z, Leongamornlert D, Saunders E, Tymrakiewicz M, Castro E, Mahmud N, et al. BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: implications for genetic testing in prostate cancer patients. Br J Cancer. 2011;105(8): 1230–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Gonzalez-Angulo AM, Timms KM, Liu S, Chen H, Litton JK, Potter J, et al. Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clin Cancer Res. 2011;17(5):1082–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Hartman A-R, Kaldate RR, Sailer LM, Painter L, Grier CE, Endsley RR, et al. Prevalence of BRCA mutations in an unselected population of triple-negative breast cancer. Cancer. 2012;118(11):2787–95.

    Article  CAS  PubMed  Google Scholar 

  41. Sandhu SK, Schelman WR, Wilding G, Moreno V, Baird RD, Miranda S, et al. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol. 2013;2045(13):1–11. Elsevier Ltd.

    Google Scholar 

  42. Turner N, Tutt A, Ashworth A. Hallmarks of “BRCAness” in sporadic cancers. Nat Rev Cancer. 2004;4:1–6.

    Article  Google Scholar 

  43. Yin Y, Shen WH. PTEN: a new guardian of the genome. Oncogene. 2008;27(41):5443–53.

    Article  CAS  PubMed  Google Scholar 

  44. Taniguchi T, Tischkowitz M, Ameziane N, Hodgson SV, Mathew CG, Joenje H, et al. Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nat Med. 2003;9(5):568–74.

    Article  CAS  PubMed  Google Scholar 

  45. Birgisdottir V, Stefansson OA, Bodvarsdottir SK, Hilmarsdottir H, Jonasson JG, Eyfjord JE. Epigenetic silencing and deletion of the BRCA1 gene in sporadic breast cancer. Breast Cancer Res. 2006;8(4):R38.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Lord CJ, McDonald S, Swift S, Turner NC, Ashworth A. A high-throughput RNA interference screen for DNA repair determinants of PARP inhibitor sensitivity. DNA Repair. 2008;7(12):2010–9.

    Article  CAS  PubMed  Google Scholar 

  47. Ang JE, Gourley C, Powell B, High H, Shapira-Frommer R, Castonguay V, et al. Efficacy of chemotherapy in BRCA1/2 mutation carrier ovarian cancer in the setting of poly(ADP-ribose) polymerase inhibitor resistance: a multi-institutional study. Clin Cancer Res. 2013;44:1–31.

    Google Scholar 

  48. Albert JM, Cao C, Kim KW, Willey CD, Geng L, Xiao D, et al. Inhibition of poly(ADP-ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models. Clin Cancer Res. 2007;13(10):3033–42.

    Article  CAS  PubMed  Google Scholar 

  49. Kummar S, Kinders R, Gutierrez ME, et al. Phase 0 clinical trial of the poly (ADP-ribose) polymerase inhibitor ABT-888 in patients with advanced malignancies. J Clin Oncol. 2009;27:2705–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Hussain M, Carducci Ma, Slovin SF, Cetnar J, Qian J, McKeegan E, et al. Pilot study of veliparib (ABT-888) with temozolomide (TMZ) in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2012;30(suppl 5; abstr 224). [Abstract].

    Google Scholar 

  51. Kristeleit RS, Shapiro G, LoRusso PM, Infante J, Flynn M, Patel MR, et al. A phase I dose-escalation and PK study of continuous oral rucaparib in patients with advanced solid tumors [abstract]. J Clin Oncol. 2013;31(suppl; abstr 2585).

    Google Scholar 

  52. Molife LR, Roxburg P, Wilson RH, Gupta A, Middleton MR, Evans TRJ, et al. A phase I study of oral rucaparib in combination with carboplatin [abstract]. J Clin Oncol. 2013;31(suppl; abstr 2586).

    Google Scholar 

  53. Drew Y, Mulligan EA, Vong W-T, Thomas HD, Kahn S, Kyle S, et al. Therapeutic potential of poly(ADP-ribose) polymerase inhibitor AG014699 in human cancers with mutated or methylated BRCA1 or BRCA2. J Natl Cancer Inst. 2011;103(4):334–46.

    Article  CAS  PubMed  Google Scholar 

  54. Ihnen M, zu Eulenburg C, Kolarova T, Qi JW, Manivong K, Chalukya M, et al. Therapeutic potential of the poly(ADP-ribose) polymerase inhibitor rucaparib for the treatment of sporadic human ovarian cancer. Mol Cancer Ther. 2013;12(6):1002–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Plummer R, Lorigan P, Steven N, Scott L, Middleton MR, Wilson RH, et al. A phase II study of the potent PARP inhibitor, Rucaparib (PF-01367338, AG014699), with temozolomide in patients with metastatic melanoma demonstrating evidence of chemopotentiation. Cancer Chemother Pharmacol. 2013; 71(5):1191–9.

    Article  CAS  PubMed  Google Scholar 

  56. De Bono JS, Mina L, Gonzalez M, Curtin NJ, Wang E, Hensaw J, et al. First-in-human trial of novel oral PARP inhibitor BMN 673 in patients with solid tumors. J Clin Oncol. 2013;31(suppl; abstr 2580). [Abstract].

    Google Scholar 

  57. Shen Y, Rehman FL, Feng Y, Boshuizen J, Bajrami I, Elliott R, et al. BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin Cancer Res. 2013;19:5003–15.

    Article  CAS  PubMed  Google Scholar 

  58. Fojo T, Bates S. Mechanisms of resistance to PARP inhibitors–three and counting. Cancer Discov. 2013;3(1):20–3.

    Article  CAS  PubMed  Google Scholar 

  59. Barber LJ, Sandhu S, Chen L, Campbell J, Kozarewa I, Fenwick K, et al. Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor. J Pathol. 2013;229:422–9.

    Article  CAS  PubMed  Google Scholar 

  60. De Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels J-P, Kocak I, et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet. 2010;376(9747):1147–54. Elsevier Ltd.

    Article  PubMed  Google Scholar 

  61. Inbar D, Cohen-Armon M, Neumann D. Erythropoietin-driven signalling and cell migration mediated by polyADP-ribosylation. Br J Cancer. 2012;107(8):1317–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Samol J, Ranson M, Scott E, Macpherson E, Carmichael J, Thomas A, et al. Safety and tolerability of the poly(ADP-ribose) polymerase (PARP) inhibitor, olaparib (AZD2281) in combination with topotecan for the treatment of patients with advanced solid tumors: a phase I study. Invest New Drugs. 2012;30(4):1493–500.

    Article  CAS  PubMed  Google Scholar 

  63. Rajan A, Carter CA, Kelly RJ, Gutierrez M, Kummar S, Szabo E, et al. A phase I combination study of olaparib with cisplatin and gemcitabine in adults with solid tumors. Clin Cancer Res. 2012;18(8): 2344–51.

    Article  CAS  PubMed  Google Scholar 

  64. Kummar S, Chen A, Ji J, Zhang Y, Reid JM, Ames M, et al. Phase I study of PARP inhibitor ABT-888 in combination with topotecan in adults with refractory solid tumors and lymphomas. Cancer Res. 2011;71(17):5626–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. O’Shaughnessy J, Osborne C, Pippen JE, Yoffe M, Patt D, Rocha C, et al. Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N Engl J Med. 2011;364(3):205–14.

    Article  PubMed  Google Scholar 

  66. O’Shaughnessy J, Schwartzberg LS, Danso MA, Rugo HS, Miller K, Yardley DA, et al. A randomized phase III study of iniparib (BSI-201) in combination with gemcitabine/carboplatin (G/C) in metastatic triple-negative breast cancer (TNBC). J Clin Oncol. 2011;29(suppl; abstr 1007). [Abstract].

    Google Scholar 

  67. Patel AG, De Lorenzo SB, Flatten KS, De Lorenzo SB, Poirier GG, Kaufmann SH. Failure of iniparib to inhibit poly(ADP-Ribose) polymerase in vitro. Clin Cancer Res. 2012;18(6):1655–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Mateo J, Ong M, Tan DSP, Gonzalez M, de Bono JS. Appraising iniparib, the PARP inhibitor that never was—what must we learn? Nature reviews. Clin Oncol. 2013;15:1–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann S. De Bono MBChB, FRCP, MSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mateo, J., Yap, T.A., De Bono, J.S. (2014). PARP Inhibitors. In: Saad, F., Eisenberger, M. (eds) Management of Castration Resistant Prostate Cancer. Current Clinical Urology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1176-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1176-9_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1175-2

  • Online ISBN: 978-1-4939-1176-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics