Skip to main content

Bone-Targeted Therapy: Rationale and Current Status

  • Chapter
  • First Online:
Management of Castration Resistant Prostate Cancer

Part of the book series: Current Clinical Urology ((CCU))

  • 863 Accesses

Abstract

Bone metastases are common in metastatic castration-resistant prostate cancer (mCRPC) and may lead to skeletal-related events (SREs) such as pathologic fracture, the requirement of surgery or radiation to bone or spinal cord compression. SREs are associated with pain, loss of function, and decreased survival. Therefore, preventing SREs is a key consideration in the treatment of mCRPC. Osteoclast-targeted agents such as the bisphosphonate zoledronic acid and the monoclonal antibody denosumab reduce the incidence of SREs in mCRPC. Skeletal complications are also common to non-metastatic prostate cancer as androgen deprivation therapy (ADT) associated loss of bone mineral density (BMD) increases the risk of osteoporotic fragility fractures. A number of agents improve ADT-induced BMD loss in non-metastatic prostate cancer, but only denosumab has been shown to decrease fracture risk. Beyond osteoclast-targeted agents, the radiopharmaceutical agent radium-223 is a bone-targeted agent that delays skeletal events and improves survival in mCRPC. While osteoclast-targeted agents are generally well tolerated a number of adverse events associated with bisphosphonates and denosumab are sufficiently common to warrant attention. This chapter addresses the skeletal complications common to advanced prostate cancer and discusses the therapeutics available to prevent them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.

    PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    PubMed  Google Scholar 

  3. Scher HI, Morris MJ, Kelly WK, Schwartz LH, Heller G. Prostate cancer clinical trial end points: “RECIST”ing a step backwards. Clin Cancer Res. 2005;11:5223–32.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Alibhai SM, Duong-Hua M, Cheung AM, et al. Fracture types and risk factors in men with prostate cancer on androgen deprivation therapy: a matched cohort study of 19,079 men. J Urol. 2010;184:918–23.

    Article  PubMed  Google Scholar 

  5. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423:337–42.

    Article  CAS  PubMed  Google Scholar 

  6. Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89:309–19.

    Article  CAS  PubMed  Google Scholar 

  7. Yasuda H, Shima N, Nakagawa N, et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology. 1998;139:1329–37.

    PubMed  Google Scholar 

  8. Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93:165–76.

    Article  CAS  PubMed  Google Scholar 

  9. Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998; 95:3597–602.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kong YY, Yoshida H, Sarosi I, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999; 397:315–23.

    Article  CAS  PubMed  Google Scholar 

  11. Anderson DM, Maraskovsky E, Billingsley WL, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 1997;390:175–9.

    Article  CAS  PubMed  Google Scholar 

  12. Wong BR, Rho J, Arron J, et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem. 1997;272:25190–4.

    Article  CAS  PubMed  Google Scholar 

  13. Wong BR, Josien R, Lee SY, et al. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J Exp Med. 1997;186:2075–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Hsu H, Lacey DL, Dunstan CR, et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci U S A. 1999;96:3540–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Li J, Sarosi I, Yan XQ, et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci U S A. 2000; 97:1566–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. LeBlanc ES, Nielson CM, Marshall LM, et al. The effects of serum testosterone, estradiol, and sex hormone binding globulin levels on fracture risk in older men. J Clin Endocrinol Metab. 2009;94:3337–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Novara G, Galfano A, Secco S, Ficarra V, Artibani W. Impact of surgical and medical castration on serum testosterone level in prostate cancer patients. Urol Int. 2009;82:249–55.

    Article  CAS  PubMed  Google Scholar 

  18. Vidal O, Kindblom LG, Ohlsson C. Expression and localization of estrogen receptor-beta in murine and human bone. J Bone Miner Res. 1999;14:923–9.

    Article  CAS  PubMed  Google Scholar 

  19. Smith EP, Boyd J, Frank GR, et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med. 1994;331:1056–61.

    Article  CAS  PubMed  Google Scholar 

  20. Sun YX, Schneider A, Jung Y, et al. Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res. 2005;20:318–29.

    Article  CAS  PubMed  Google Scholar 

  21. Cai J, Kandagatla P, Singareddy R, et al. Androgens induce functional CXCR4 through ERG factor expression in TMPRSS2-ERG fusion-positive prostate cancer cells. Transl Oncol. 2010;3:195–203.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Kasina S, Macoska JA. The CXCL12/CXCR4 axis promotes ligand-independent activation of the androgen receptor. Mol Cell Endocrinol. 2012;351:249–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Cooper CR, Chay CH, Pienta KJ. The role of alpha(v)beta(3) in prostate cancer progression. Neoplasia. 2002;4:191–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Gupta A, Cao W, Chellaiah MA. Integrin alphavbeta3 and CD44 pathways in metastatic prostate cancer cells support osteoclastogenesis via a Runx2/Smad 5/receptor activator of NF-kappaB ligand signaling axis. Mol Cancer. 2012;11:66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Guise TA. Molecular mechanisms of osteolytic bone metastases. Cancer. 2000;88:2892–8.

    Article  CAS  PubMed  Google Scholar 

  26. Sanders JL, Chattopadhyay N, Kifor O, Yamaguchi T, Brown EM. Ca(2+)-sensing receptor expression and PTHrP secretion in PC-3 human prostate cancer cells. Am J Physiol Endocrinol Metab. 2001;281: E1267–74.

    CAS  PubMed  Google Scholar 

  27. Iddon J, Bundred NJ, Hoyland J, et al. Expression of parathyroid hormone-related protein and its receptor in bone metastases from prostate cancer. J Pathol. 2000;191:170–4.

    Article  CAS  PubMed  Google Scholar 

  28. Lupp A, Klenk C, Rocken C, Evert M, Mawrin C, Schulz S. Immunohistochemical identification of the PTHR1 parathyroid hormone receptor in normal and neoplastic human tissues. Eur J Endocrinol. 2010; 162:979–86.

    Article  CAS  PubMed  Google Scholar 

  29. Kondo H, Guo J, Bringhurst FR. Cyclic adenosine monophosphate/protein kinase A mediates parathyroid hormone/parathyroid hormone-related protein receptor regulation of osteoclastogenesis and expression of RANKL and osteoprotegerin mRNAs by marrow stromal cells. J Bone Miner Res. 2002;17:1667–79.

    Article  CAS  PubMed  Google Scholar 

  30. Jin R, Sterling JA, Edwards JR, et al. Activation of NF-kappa B signaling promotes growth of prostate cancer cells in bone. PLoS One. 2013;8:e60983.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Liao J, Schneider A, Datta NS, McCauley LK. Extracellular calcium as a candidate mediator of prostate cancer skeletal metastasis. Cancer Res. 2006;66:9065–73.

    Article  CAS  PubMed  Google Scholar 

  32. Nelson JB, Hedican SP, George DJ, et al. Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nat Med. 1995;1: 944–9.

    Article  CAS  PubMed  Google Scholar 

  33. Feeley BT, Gamradt SC, Hsu WK, et al. Influence of BMPs on the formation of osteoblastic lesions in metastatic prostate cancer. J Bone Miner Res. 2005; 20:2189–99.

    Article  CAS  PubMed  Google Scholar 

  34. Hall CL, Daignault SD, Shah RB, Pienta KJ, Keller ET. Dickkopf-1 expression increases early in prostate cancer development and decreases during progression from primary tumor to metastasis. Prostate. 2008; 68:1396–404.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Thudi NK, Martin CK, Murahari S, et al. Dickkopf-1 (DKK-1) stimulated prostate cancer growth and metastasis and inhibited bone formation in osteoblastic bone metastases. Prostate. 2011;71:615–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Hiraga T, Kizaka-Kondoh S, Hirota K, Hiraoka M, Yoneda T. Hypoxia and hypoxia-inducible factor-1 expression enhance osteolytic bone metastases of breast cancer. Cancer Res. 2007;67:4157–63.

    Article  CAS  PubMed  Google Scholar 

  37. Fuller K, Murphy C, Kirstein B, Fox SW, Chambers TJ. TNFalpha potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL. Endocrinology. 2002;143:1108–18.

    CAS  PubMed  Google Scholar 

  38. Achbarou A, Kaiser S, Tremblay G, et al. Urokinase overproduction results in increased skeletal metastasis by prostate cancer cells in vivo. Cancer Res. 1994; 54:2372–7.

    CAS  PubMed  Google Scholar 

  39. Saad F, Gleason DM, Murray R, et al. Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. J Natl Cancer Inst. 2004;96:879–82.

    Article  CAS  PubMed  Google Scholar 

  40. DePuy V, Anstrom KJ, Castel LD, Schulman KA, Weinfurt KP, Saad F. Effects of skeletal morbidities on longitudinal patient-reported outcomes and survival in patients with metastatic prostate cancer. Support Care Cancer. 2007;15:869–76.

    PubMed  Google Scholar 

  41. Oefelein MG, Ricchiuti V, Conrad W, Resnick MI. Skeletal fractures negatively correlate with overall survival in men with prostate cancer. J Urol. 2002;168:1005–7.

    Article  PubMed  Google Scholar 

  42. Brown JE, Cook RJ, Major P, et al. Bone turnover markers as predictors of skeletal complications in prostate cancer, lung cancer, and other solid tumors. J Natl Cancer Inst. 2005;97:59–69.

    Article  CAS  PubMed  Google Scholar 

  43. Watts NB, Adler RA, Bilezikian JP, et al. Osteoporosis in men: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2012;97:1802–22.

    Article  CAS  PubMed  Google Scholar 

  44. Smith MR, Lee WC, Brandman J, Wang Q, Botteman M, Pashos CL. Gonadotropin-releasing hormone agonists and fracture risk: a claims-based cohort study of men with nonmetastatic prostate cancer. J Clin Oncol. 2005;23:7897–903.

    Article  CAS  PubMed  Google Scholar 

  45. Smith MR, Egerdie B, Hernandez Toriz N, et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med. 2009; 361:745–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Kanis JA, Borgstrom F, De Laet C, et al. Assessment of fracture risk. Osteoporos Int. 2005;16:581–9.

    Article  PubMed  Google Scholar 

  47. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 2008;19:385–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Dearnaley DP, Sydes MR, Mason MD, et al. A double-blind, placebo-controlled, randomized trial of oral sodium clodronate for metastatic prostate cancer (MRC PR05 Trial). J Natl Cancer Inst. 2003; 95:1300–11.

    Article  CAS  PubMed  Google Scholar 

  49. Small EJ, Smith MR, Seaman JJ, Petrone S, Kowalski MO. Combined analysis of two multicenter, randomized, placebo-controlled studies of pamidronate disodium for the palliation of bone pain in men with metastatic prostate cancer. J Clin Oncol. 2003;21: 4277–84.

    Article  CAS  PubMed  Google Scholar 

  50. Saad F, Gleason DM, Murray R, et al. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J Natl Cancer Inst. 2002;94:1458–68.

    Article  CAS  PubMed  Google Scholar 

  51. Marx RE. Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg. 2003; 61:1115–17.

    Article  PubMed  Google Scholar 

  52. Smith MR, Kabbinavar F, Saad F, et al. Natural history of rising serum prostate-specific antigen in men with castrate nonmetastatic prostate cancer. J Clin Oncol. 2005;23:2918–25.

    Article  PubMed  Google Scholar 

  53. Smith MR, Eastham J, Gleason DM, Shasha D, Tchekmedyian S, Zinner N. Randomized controlled trial of zoledronic acid to prevent bone loss in men receiving androgen deprivation therapy for nonmetastatic prostate cancer. J Urol. 2003;169:2008–12.

    Article  CAS  PubMed  Google Scholar 

  54. Choo R, Lukka H, Cheung P, et al. Randomized, double-blinded, placebo-controlled, trial of risedronate for the prevention of bone mineral density loss in nonmetastatic prostate cancer patients receiving radiation therapy plus androgen deprivation therapy. Int J Radiat Oncol Biol Phys. 2013;85:1239–45.

    Article  CAS  PubMed  Google Scholar 

  55. Smith MR, Saad F, Coleman R, et al. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet. 2012; 379:39–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Fizazi K, Carducci M, Smith M, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet. 2011;377: 813–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Robinson RG, Blake GM, Preston DF, et al. Strontium-89: treatment results and kinetics in patients with painful metastatic prostate and breast cancer in bone. Radiographics. 1989;9:271–81.

    Article  CAS  PubMed  Google Scholar 

  58. Bauman G, Charette M, Reid R, Sathya J. Radiopharmaceuticals for the palliation of painful bone metastasis – a systemic review. Radiother Oncol. 2005;75:258–70.

    Article  CAS  PubMed  Google Scholar 

  59. Henriksen G, Fisher DR, Roeske JC, Bruland OS, Larsen RH. Targeting of osseous sites with alpha-emitting 223Ra: comparison with the beta-emitter 89Sr in mice. J Nucl Med. 2003;44:252–9.

    CAS  PubMed  Google Scholar 

  60. Laing AH, Ackery DM, Bayly RJ, et al. Strontium-89 chloride for pain palliation in prostatic skeletal malignancy. Br J Radiol. 1991;64:816–22.

    Article  CAS  PubMed  Google Scholar 

  61. Serafini AN, Houston SJ, Resche I, et al. Palliation of pain associated with metastatic bone cancer using samarium-153 lexidronam: a double-blind placebo-controlled clinical trial. J Clin Oncol. 1998;16: 1574–81.

    CAS  PubMed  Google Scholar 

  62. Resche I, Chatal JF, Pecking A, et al. A dose-controlled study of 153Sm-ethylenediaminetetramethylenephosphonate (EDTMP) in the treatment of patients with painful bone metastases. Eur J Cancer. 1997;33:1583–91.

    Article  CAS  PubMed  Google Scholar 

  63. Parker C, Nilsson S, Heinrich D, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369:213–23.

    Article  CAS  PubMed  Google Scholar 

  64. de Bono JS, Logothetis CJ, Molina A, et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med. 2011;364:1995–2005.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Scher HI, Fizazi K, Saad F, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 2012;367:1187–97.

    Article  CAS  PubMed  Google Scholar 

  66. Tchekmedyian NS, Chen YM, Saad F. Disease progression increases the risk of skeletal-related events in patients with bone metastases from castration-resistant prostate cancer, lung cancer, or other solid tumors. Cancer Invest. 2010;28:849–55.

    Article  PubMed  Google Scholar 

  67. Saad F, Fizazi K, Smith MR, et al. Impact of concomitant bone-targeted therapies (BTT) on outcomes in metastatic castration-resistant prostate cancer (mCRPC) patients (pts) without prior chemotherapy (ctx) treated with abiraterone acetate (AA) or prednisone (P). J Clin Oncol. 2013;31(suppl; abstr 5037).

    Google Scholar 

  68. James ND, Pirrie S, Barton D, et al. Clinical outcomes in patients with castrate-refractory prostate cancer (CRPC) metastatic to bone randomized in the factorial TRAPEZE trial to docetaxel (D) with strontium-89 (Sr89), zoledronic acid (ZA), neither, or both (ISRCTN 12808747). J Clin Oncol. 2013;31(suppl; abstr LBA5000).

    Google Scholar 

  69. Advisory Task Force on Bisphosphonate-Related Ostenonecrosis of the Jaws AAoO, American Association of Oral and Maxillofacial Surgeons. American Association of Oral and Maxillofacial Surgeons position paper on bisphosphonate-related osteonecrosis of the jaws. J Oral Maxillofacial Surg. 2007;65:369–76.

    Article  Google Scholar 

  70. Saad F, Brown JE, Van Poznak C, et al. Incidence, risk factors, and outcomes of osteonecrosis of the jaw: integrated analysis from three blinded active-controlled phase III trials in cancer patients with bone metastases. Ann Oncol. 2012;23:1341–7.

    Article  CAS  PubMed  Google Scholar 

  71. Barasch A, Cunha-Cruz J, Curro FA, et al. Risk factors for osteonecrosis of the jaws: a case–control study from the CONDOR Dental PBRN. Tex Dent J. 2013;130:299–307.

    CAS  PubMed  Google Scholar 

  72. Yamazaki T, Yamori M, Ishizaki T, et al. Increased incidence of osteonecrosis of the jaw after tooth extraction in patients treated with bisphosphonates: a cohort study. Int J Oral Maxillofac Surg. 2012; 41:1397–403.

    CAS  PubMed  Google Scholar 

  73. Vahtsevanos K, Kyrgidis A, Verrou E, et al. Longitudinal cohort study of risk factors in cancer patients of bisphosphonate-related osteonecrosis of the jaw. J Clin Oncol. 2009;27:5356–62.

    Article  CAS  PubMed  Google Scholar 

  74. Ripamonti CI, Maniezzo M, Campa T, et al. Decreased occurrence of osteonecrosis of the jaw after implementation of dental preventive measures in solid tumour patients with bone metastases treated with bisphosphonates. The experience of the National Cancer Institute of Milan. Ann Oncol. 2009;20: 137–45.

    Article  CAS  PubMed  Google Scholar 

  75. Dimopoulos MA, Kastritis E, Bamia C, et al. Reduction of osteonecrosis of the jaw (ONJ) after implementation of preventive measures in patients with multiple myeloma treated with zoledronic acid. Ann Oncol. 2009;20:117–20.

    Article  CAS  PubMed  Google Scholar 

  76. Block GA, Bone HG, Fang L, Lee E, Padhi D. A single-dose study of denosumab in patients with various degrees of renal impairment. J Bone Miner Res. 2012;27:1471–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Chang JT, Green L, Beitz J. Renal failure with the use of zoledronic acid. New Eng J Med. 2003;349: 1676–9. discussion −9.

    Article  CAS  PubMed  Google Scholar 

  78. Fizazi K, Bosserman L, Gao G, Skacel T, Markus R. Denosumab treatment of prostate cancer with bone metastases and increased urine N-telopeptide levels after therapy with intravenous bisphosphonates: results of a randomized phase II trial. J Urol. 2009; 182:509–15. discussion 15–6.

    Article  CAS  PubMed  Google Scholar 

  79. Fizazi K, Lipton A, Mariette X, et al. Randomized phase II trial of denosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates. J Clin Oncol. 2009;27:1564–71.

    Article  CAS  PubMed  Google Scholar 

  80. Saad F, Chen YM, Gleason DM, Chin J. Continuing benefit of zoledronic acid in preventing skeletal complications in patients with bone metastases. Clin Genitourin Cancer. 2007;5:390–6.

    CAS  PubMed  Google Scholar 

  81. Hussain M, Tangen CM, Berry DL, et al. Intermittent versus continuous androgen deprivation in prostate cancer. N Engl J Med. 2013;368: 1314–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Bamias A, Kastritis E, Bamia C, et al. Osteonecrosis of the jaw in cancer after treatment with bisphosphonates: incidence and risk factors. J Clin Oncol. 2005;23:8580–7.

    Article  PubMed  Google Scholar 

  83. Stopeck AT, Lipton A, Martin M, et al. P3-16-07: denosumab in patients with breast cancer and bone metastases previously treated with zoledronic acid or denosumab: results from the 2-year open-label extension treatment phase of a pivotal phase 3 study. Cancer Res 2011;71(24 suppl; abstract nr P3-16-07).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Saad MD, FRCS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gartrell, B.A., Saad, F. (2014). Bone-Targeted Therapy: Rationale and Current Status. In: Saad, F., Eisenberger, M. (eds) Management of Castration Resistant Prostate Cancer. Current Clinical Urology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1176-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1176-9_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1175-2

  • Online ISBN: 978-1-4939-1176-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics