Skip to main content

Customization of 13C-MFA Strategy According to Cell Culture System

  • Protocol
  • First Online:
Metabolic Flux Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1191))

Abstract

13C-MFA is far from being a simple assay for quantifying metabolic activity. It requires considerable up-front experimental planning and familiarity with the cell culture system in question, as well as optimized analytics and adequate computation frameworks. The success of a 13C-MFA experiment is ultimately rated by the ability to accurately quantify the flux of one or more reactions of interest. In this chapter, we describe the different 13C-MFA strategies that have been developed for the various fermentation or cell culture systems, as well as the limitations of the respective strategies. The strategies are affected by many factors and the 13C-MFA modeling and experimental strategy must be tailored to conditions. The prevailing philosophy in the computation process is that any metabolic processes that produce significant systematic bias in the labeling pattern of the metabolites being measured must be described in the model. It is equally important to plan a labeling strategy by analytical screening or by heuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wittmann C (2007) Fluxome analysis using GC-MS. Microb Cell Fact 6:6

    Article  PubMed Central  PubMed  Google Scholar 

  2. Szyperski T (1998) 13C-NMR, MS and metabolic flux balancing in biotechnology research. Q Rev Biophys 31:41–106

    Article  CAS  PubMed  Google Scholar 

  3. Wiechert W, de Graaf AA (1996) In vivo stationary flux analysis by 13C labeling experiments. Adv Biochem Eng Biotechnol 54:109–154

    CAS  PubMed  Google Scholar 

  4. Massou S, Nicolas C, Letisse F, Portais JC (2007) NMR-based fluxomics: quantitative 2D NMR methods for isotopomers analysis. Phytochemistry 68:2330–2340

    Article  CAS  PubMed  Google Scholar 

  5. Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2:62

    Article  PubMed Central  PubMed  Google Scholar 

  6. Noh K, Wiechert W (2011) The benefits of being transient: isotope-based metabolic flux analysis at the short time scale. Appl Microbiol Biotechnol 91:1247–1265

    Article  PubMed  Google Scholar 

  7. Zamboni N (2011) 13C metabolic flux analysis in complex systems. Curr Opin Biotechnol 22:103–108

    Article  CAS  PubMed  Google Scholar 

  8. Tang YJ, Martin HG, Myers S, Rodriguez S, Baidoo EE, Keasling JD (2009) Advances in analysis of microbial metabolic fluxes via (13)C isotopic labeling. Mass Spectrom Rev 28:362–375

    Article  CAS  PubMed  Google Scholar 

  9. Zamboni N, Fendt SM, Ruhl M, Sauer U (2009) (13)C-based metabolic flux analysis. Nat Protoc 4:878–892

    Article  CAS  PubMed  Google Scholar 

  10. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng 9:68–86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ahn WS, Antoniewicz MR (2012) Towards dynamic metabolic flux analysis in CHO cell cultures. Biotechnol J 7:61–74

    Article  CAS  PubMed  Google Scholar 

  12. Christen S, Sauer U (2011) Intracellular characterization of aerobic glucose metabolism in seven yeast species by 13C flux analysis and metabolomics. FEMS Yeast Res 11:263–272

    Article  CAS  PubMed  Google Scholar 

  13. Niklas J, Sandig V, Heinzle E (2011) Metabolite channeling and compartmentation in the human cell line AGE1.HN determined by 13C labeling experiments and 13C metabolic flux analysis. J Biosci Bioeng 112: 616–623

    Article  CAS  PubMed  Google Scholar 

  14. Young JD, Shastri AA, Stephanopoulos G, Morgan JA (2011) Mapping photoautotrophic metabolism with isotopically nonstationary (13)C flux analysis. Metab Eng 13:656–665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Wiechert W, Mollney M, Petersen S, de Graaf AA (2001) A universal framework for 13C metabolic flux analysis. Metab Eng 3:265–283

    Article  CAS  PubMed  Google Scholar 

  16. Zamboni N, Fischer E, Sauer U (2005) FiatFlux—a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinformatics 6:209

    Article  PubMed Central  PubMed  Google Scholar 

  17. Yoo H, Antoniewicz MR, Stephanopoulos G, Kelleher JK (2008) Quantifying reductive carboxylation flux of glutamine to lipid in a brown adipocyte cell line. J Biol Chem 283: 20621–20627

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Quek LE, Wittmann C, Nielsen LK, Kromer JO (2009) OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis. Microb Cell Fact 8:25

    Article  PubMed Central  PubMed  Google Scholar 

  19. Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C (2005) Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol 71:8587–8596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Schmidt K, Nielsen J, Villadsen J (1999) Quantitative analysis of metabolic fluxes in Escherichia coli, using two-dimensional NMR spectroscopy and complete isotopomer models. J Biotechnol 71:175

    Article  CAS  PubMed  Google Scholar 

  21. Dauner M, Sauer U (2000) GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnol Prog 16:642–649

    Article  CAS  PubMed  Google Scholar 

  22. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Accurate assessment of amino acid mass isotopomer distributions for metabolic flux analysis. Anal Chem 79:7554–7559

    Article  CAS  PubMed  Google Scholar 

  23. Deshpande R, Yang TH, Heinzle E (2009) Towards a metabolic and isotopic steady state in CHO batch cultures for reliable isotope-based metabolic profiling. Biotechnol J 4:247–263

    Article  CAS  PubMed  Google Scholar 

  24. Blank LM, Kuepfer L, Sauer U (2005) Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol 6:R49

    Article  PubMed Central  PubMed  Google Scholar 

  25. Kromer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C (2004) In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J Bacteriol 186:1769–1784

    Article  PubMed Central  PubMed  Google Scholar 

  26. van Winden WA, van Dam JC, Ras C, Kleijn RJ, Vinke JL, van Gulik WM, Heijnen JJ (2005) Metabolic-flux analysis of Saccharomyces cerevisiae CEN.PK113-7D based on mass isotopomer measurements of (13)C-labeled primary metabolites. FEMS Yeast Res 5:559–568

    Article  PubMed  Google Scholar 

  27. Noack S, Noh K, Moch M, Oldiges M, Wiechert W (2011) Stationary versus non-stationary (13)C-MFA: a comparison using a consistent dataset. J Biotechnol 154:179–190

    Article  CAS  PubMed  Google Scholar 

  28. Schaub J, Mauch K, Reuss M (2008) Metabolic flux analysis in Escherichia coli by integrating isotopic dynamic and isotopic stationary 13C labeling data. Biotechnol Bioeng 99:1170–1185

    Article  CAS  PubMed  Google Scholar 

  29. Grotkjaer T, Akesson M, Christensen B, Gombert AK, Nielsen J (2004) Impact of transamination reactions and protein turnover on labeling dynamics in (13)C-labeling experiments. Biotechnol Bioeng 86:209–216

    Article  CAS  PubMed  Google Scholar 

  30. Noh K, Gronke K, Luo B, Takors R, Oldiges M, Wiechert W (2007) Metabolic flux analysis at ultra short time scale: isotopically non-stationary 13C labeling experiments. J Biotechnol 129:249–267

    Article  PubMed  Google Scholar 

  31. Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5:593–599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Ahn WS, Antoniewicz MR (2011) Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry. Metab Eng 13:598–609

    Article  CAS  PubMed  Google Scholar 

  33. Shastri AA, Morgan JA (2007) A transient isotopic labeling methodology for 13C metabolic flux analysis of photoautotrophic microorganisms. Phytochemistry 68:2302–2312

    Article  CAS  PubMed  Google Scholar 

  34. Antoniewicz MR, Kraynie DF, Laffend LA, Gonzalez-Lergier J, Kelleher JK, Stephanopoulos G (2007) Metabolic flux analysis in a nonstationary system: fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol. Metab Eng 9: 277–292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Sengupta N, Rose ST, Morgan JA (2011) Metabolic flux analysis of CHO cell metabolism in the late non-growth phase. Biotechnol Bioeng 108:82–92

    Article  CAS  PubMed  Google Scholar 

  36. Noh K, Wahl A, Wiechert W (2006) Computational tools for isotopically instationary 13C labeling experiments under metabolic steady state conditions. Metab Eng 8:554–577

    Article  PubMed  Google Scholar 

  37. Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L, Kelleher JK, Vander Heiden MG, Iliopoulos O, Stephanopoulos G (2012) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481:380–384

    CAS  Google Scholar 

  38. van Winden WA, Heijnen JJ, Verheijen PJ, Grievink J (2001) A priori analysis of metabolic flux identifiability from (13)C-labeling data. Biotechnol Bioeng 74:505–516

    Article  PubMed  Google Scholar 

  39. Isermann N, Wiechert W (2003) Metabolic isotopomer labeling systems. Part II. Structural flux identifiability analysis. Math Biosci 183: 175–214

    Article  CAS  PubMed  Google Scholar 

  40. Chang Y, Suthers PF, Maranas CD (2008) Identification of optimal measurement sets for complete flux elucidation in metabolic flux analysis experiments. Biotechnol Bioeng 100: 1039–1049

    Article  CAS  PubMed  Google Scholar 

  41. Rantanen A, Mielikainen T, Rousu J, Maaheimo H, Ukkonen E (2006) Planning optimal measurements of isotopomer distributions for estimation of metabolic fluxes. Bioinformatics 22:1198–1206

    Article  CAS  PubMed  Google Scholar 

  42. Mollney M, Wiechert W, Kownatzki D, de Graaf AA (1999) Bidirectional reaction steps in metabolic networks: IV. Optimal design of isotopomer labeling experiments. Biotechnol Bioeng 66:86–103

    Article  CAS  PubMed  Google Scholar 

  43. Pey J, Rubio A, Theodoropoulos C, Cascante M, Planes FJ (2012) Integrating tracer-based metabolomics data and metabolic fluxes in a linear fashion via Elementary Carbon Modes. Metab Eng 14:344–353

    Article  CAS  PubMed  Google Scholar 

  44. Crown SB, Antoniewicz MR (2012) Selection of tracers for 13C-metabolic flux analysis using elementary metabolite units (EMU) basis vector methodology. Metab Eng 14:150–161

    Article  CAS  PubMed  Google Scholar 

  45. Walther JL, Metallo CM, Zhang J, Stephanopoulos G (2012) Optimization of 13C isotopic tracers for metabolic flux analysis in mammalian cells. Metab Eng 14:162–171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Crown SB, Ahn WS, Antoniewicz MR (2012) Rational design of 13C-labeling experiments for metabolic flux analysis in mammalian cells. BMC Syst Biol 6:43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Metallo CM, Walther JL, Stephanopoulos G (2009) Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. J Biotechnol 144:167–174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Haverkorn van Rijsewijk BR, Nanchen A, Nallet S, Kleijn RJ, Sauer U (2011) Large-scale 13C-flux analysis reveals distinct transcriptional control of respiratory and fermentative metabolism in Escherichia coli. Mol Syst Biol 7:477

    Article  PubMed Central  PubMed  Google Scholar 

  49. Fendt SM, Sauer U (2010) Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates. BMC Syst Biol 4:12

    Article  PubMed Central  PubMed  Google Scholar 

  50. Ravikirthi P, Suthers PF, Maranas CD (2011) Construction of an E. coli genome-scale atom mapping model for MFA calculations. Biotechnol Bioeng 108:1372–1382

    Article  CAS  PubMed  Google Scholar 

  51. Leighty RW, Antoniewicz MR (2011) Dynamic metabolic flux analysis (DMFA): a framework for determining fluxes at metabolic non-steady state. Metab Eng 13:745–755

    Article  CAS  PubMed  Google Scholar 

  52. Suthers PF, Burgard AP, Dasika MS, Nowroozi F, Van Dien S, Keasling JD, Maranas CD (2007) Metabolic flux elucidation for large-scale models using 13C labeled isotopes. Metab Eng 9:387–405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars K. Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Quek, LE., Nielsen, L.K. (2014). Customization of 13C-MFA Strategy According to Cell Culture System. In: Krömer, J., Nielsen, L., Blank, L. (eds) Metabolic Flux Analysis. Methods in Molecular Biology, vol 1191. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1170-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1170-7_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1169-1

  • Online ISBN: 978-1-4939-1170-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics