Skip to main content

III.F. Vitreous in the Pathobiology of Macular Pucker

  • Chapter
  • First Online:
Vitreous

Abstract

First described in 1865 by Iwanoff [1], macular pucker has been extensively studied and researched under a variety of names, including cellophane maculopathy, epiretinal membrane, preretinal fibrosis, epiretinal fibrosis, and surface wrinkling retinopathy [2, 3]. Macular pucker can be defined as a premacular, avascular, fibrocellular membrane with folds and striae in the underlying inner retina and disturbed cytoarchitecture in the outer retina [4, 5]. The term “epiretinal membrane (ERM)” is most often employed, although it is not as accurate as the term “premacular membrane (PMM).” One reason why PMM is more accurate is that the membrane is always anterior to the retina, while the term “epiretinal” means adjacent to the retina and can refer to subretinal membranes. Further, the membrane is only clinically relevant when attached to the macula. Thus, the preferred terminologies are “premacular membrane (PMM)” to refer to the pathologic membrane itself and “macular pucker (MP)” to refer to the effects of this membrane on the macula. This chapter will review the prevailing theories of pathophysiology and the mechanism(s) of visual impairment caused by macular pucker.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Iwanoff A. Beiträge zur normalen und pathologischen Anatomie des Auges. Graefes Arch Clin Exp Ophthalmol. 1865;11(1):135–70.

    Google Scholar 

  2. Ng CH, Cheung N, Wang JJ, Islam AFM, Kawasaki R, Meuer SM, et al. Prevalence and risk factors for epiretinal membranes in a multi-ethnic United States population. Ophthalmology. 2011;118(4):694–9.

    PubMed  PubMed Central  Google Scholar 

  3. Fraser-Bell S, Guzowski M, Rochtchina E, Wang JJ, Mitchell P. Five-year cumulative incidence and progression of epiretinal membranes: the Blue Mountains Eye Study. Ophthalmology. 2003;110(1):34.

    PubMed  Google Scholar 

  4. Foos R. Vitreoretinal juncture; epiretinal membranes and vitreous. Invest Ophthalmol Vis Sci. 1977;16(5):416–22.

    PubMed  CAS  Google Scholar 

  5. Hiscott P, Grierson I, McLeod D. Natural history of fibrocellular epiretinal membranes: a quantitative, autoradiographic, and immunohistochemical study. Br J Ophthalmol. 1985;69(11):810–23.

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Klein R, Klein B, Wang Q, Moss SE. The epidemiology of epiretinal membranes. Trans Am Ophthalmol Soc. 1994;92:403.

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Mitchell P, Smith W, Chey T, Wang JJ, Chang A. Prevalence and associations of epiretinal membranes. The Blue Mountains Eye Study, Australia. Ophthalmology. 1997;104(6):1033.

    PubMed  CAS  Google Scholar 

  8. McCarty DJ, Mukesh BN, Chikani V, Wang JJ, Mitchell P, Taylor HR, et al. Prevalence and associations of epiretinal membranes in the visual impairment project. Am J Ophthalmol. 2005;140(2):288–94.

    PubMed  Google Scholar 

  9. Appiah A, Hirose T, Kado M. A review of 324 cases of idiopathic premacular gliosis. Am J Ophthalmol. 1988;106(5):533.

    PubMed  CAS  Google Scholar 

  10. Fraser-Bell S, Ying-Lai M, Klein R, Varma R. Prevalence and associations of epiretinal membranes in latinos: the Los Angeles Latino Eye Study. Invest Ophthalmol Vis Sci. 2004;45(6):1732–6.

    PubMed  Google Scholar 

  11. Banach MJ, Hassan TS, Cox MS, Margherio RR, Williams GA, Garretson BR, et al. Clinical course and surgical treatment of macular epiretinal membranes in young subjects. Ophthalmology. 2001;108(1):23–6.

    PubMed  CAS  Google Scholar 

  12. Meyer CH, Rodrigues EB, Mennel S, Schmidt JC, Kroll P. Spontaneous separation of epiretinal membrane in young subjects: personal observations and review of the literature. Graefes Arch Clin Exp Ophthalmol. 2004;242(12):977–85.

    PubMed  Google Scholar 

  13. Khaja HA, McCannel CA, Diehl NN, Mohney BG. Incidence and clinical characteristics of epiretinal membranes in children. Arch Ophthalmol. 2008;126(5):632.

    PubMed  PubMed Central  Google Scholar 

  14. Sebag J, Hageman G. Interfaces. Eur J Ophthalmol. 2000;10(1):1.

    PubMed  CAS  Google Scholar 

  15. Foos RY. Vitreoretinal juncture; topographical variations. Invest Ophthalmol Vis Sci. 1972;11(10):801–8.

    CAS  Google Scholar 

  16. Johnson MW. Posterior vitreous detachment: evolution and complications of its early stages. Am J Ophthalmol. 2010;149(3):371–82.

    PubMed  Google Scholar 

  17. Sebag J. Anatomy and pathology of the vitreo-retinal interface. Eye (Lond). 1992;6(6):541–52.

    Google Scholar 

  18. Heegaard S, Jensen O, Prause J. Structure of the vitread face of the monkey optic disc (Macaca mulatta). Graefes Arch Clin Exp Ophthalmol. 1988;226(4):377–83.

    PubMed  CAS  Google Scholar 

  19. Sebag J. Vitreous- from biochemistry to clinical relevance. In: Tasman W, Jaeger E, editors. Duane’s foundations of clinical ophthalmology. Philadelphia: Lippincott Williams & Wilkins; 1998. p. 1–34.

    Google Scholar 

  20. Kita T, Hata Y, Arita R, Kawahara S, Miura M, Nakao S, et al. Role of TGF-beta in proliferative vitreoretinal diseases and ROCK as a therapeutic target. Proc Natl Acad Sci USA. 2008;105(45):17504–9.

    Google Scholar 

  21. Zhao F, Gandorfer A, Haritoglou C, Scheler R, Schaumberger MM, Kampik A, Schumann RG. Epiretinal cell proliferation in macular pucker and vitreomacular traction syndrome: analysis of flat-mounted internal limiting membrane specimens. Retina. 2013;33(1):77–88.

    PubMed  Google Scholar 

  22. Wang MY, Sebag J. Combined SD-OCT/SLO imaging of vitreous and the vitreo-retinal interface. In: Essentials of Ophthalmology: Medical Retina - Focus on Retinal Imaging (Holz, Spaide, eds). Springer-Verlag, 2010.

    Google Scholar 

  23. Ramesh S, Bonshek R, Bishop P. Immunolocalisation of opticin in the human eye. Br J Ophthalmol. 2004;88(5):697–702.

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Sebag J. Pharmacologic vitreolysis. Retina. 1998;18(9502274):1–3.

    PubMed  CAS  Google Scholar 

  25. Sebag J, Ansari RR, Suh KI. Pharmacologic vitreolysis with microplasmin increases vitreous diffusion coefficients. Graefes Arch Clin Exp Ophthalmol. 2007;245(4):576–80.

    PubMed  CAS  Google Scholar 

  26. Sebag J. Pharmacologic vitreolysis-premise and promise of the first decade. Retina. 2009;29(7):871.

    PubMed  CAS  Google Scholar 

  27. Takano A, Hirata A, Ogasawara K, Sagara N, Inomata Y, Kawaji T, et al. Posterior vitreous detachment induced by nattokinase (subtilisin NAT): a novel enzyme for pharmacologic vitreolysis. Invest Ophthalmol Vis Sci. 2006;47(5):2075–9.

    PubMed  Google Scholar 

  28. Wang ZL, Zhang X, Xu X, Sun XD, Wang F. PVD following plasmin but not hyaluronidase: implications for combination pharmacologic vitreolysis therapy. Retina. 2005;25(1):38.

    PubMed  CAS  Google Scholar 

  29. Wang F, Wang Z, Sun X, Wang F, Xu X, Zhang X. Safety and efficacy of dispase and plasmin in pharmacologic vitreolysis. Invest Ophthalmol Vis Sci. 2004;45(9):3286–90.

    PubMed  Google Scholar 

  30. Sakuma T, Tanaka M, Mizota A, Inoue J, Pakola S. Safety of in vivo pharmacologic vitreolysis with recombinant microplasmin in rabbit eyes. Invest Ophthalmol Vis Sci. 2005;46(9):3295–9.

    PubMed  Google Scholar 

  31. Foos RY. Vitreoretinal juncture—simple epiretinal membranes. Graefes Arch Clin Exp Ophthalmol. 1974;189(4):231–50.

    CAS  Google Scholar 

  32. Foos RY, Roth A. Surface structure of the optic nerve head. 2. Vitreopapillary attachments and posterior vitreous detachment. Am J Ophthalmol. 1973;76(5):662.

    PubMed  CAS  Google Scholar 

  33. Roth A, Foos R. Surface wrinkling retinopathy in eyes enucleated at autopsy. Trans Am Acad Ophthalmol Otolaryngol. 1971;75(5):1047.

    PubMed  CAS  Google Scholar 

  34. Snead D, James S, Snead M. Pathological changes in the vitreoretinal junction 1: epiretinal membrane formation. Eye (Lond). 2008;22(10):1310–7.

    CAS  Google Scholar 

  35. Snead D, Cullen N, James S, Poulson A, Morris A, Lukaris A, et al. Hyperconvolution of the inner limiting membrane in vitreomaculopathies. Graefes Arch Clin Exp Ophthalmol. 2004;242(10):853–62.

    PubMed  CAS  Google Scholar 

  36. Sebag J, Sadun AA. Reflections (Guest Editorial). Graefes Arch Clin Exp Ophthalmol. 2004;242:811–3.

    PubMed  CAS  Google Scholar 

  37. Bellhorn M, Friedman A, Wise G, Henkind P. Ultrastructure and clinicopathologic correlation of idiopathic preretinal macular fibrosis. Am J Ophthalmol. 1975;79(3):366.

    PubMed  CAS  Google Scholar 

  38. Messmer EM, Heidenkummer HP, Kampik A. Ultrastructure of epiretinal membranes associated with macular holes. Graefes Arch Clin Exp Ophthalmol. 1998;236(4):248–54.

    PubMed  CAS  Google Scholar 

  39. Hamburg A. Some investigations on the cells of the vitreous body. Ophthalmologica. 1959;138(2):81–107.

    PubMed  CAS  Google Scholar 

  40. Sebag J. The vitreous: structure, function, and pathobiology. New York: Springer; 1989.

    Google Scholar 

  41. Kohno R, Hata Y, Kawahara S, Kita T, Arita R, Mochizuki Y, et al. Possible contribution of hyalocytes to idiopathic epiretinal membrane formation and its contraction. Br J Ophthalmol. 2009;93(8):1020–6.

    PubMed  Google Scholar 

  42. Sebag J, Gupta P, Rosen RR, Garcia P, Sadun AA. Macular holes and macular pucker: the role of vitreoschisis as imaged by optical coherence tomography/scanning laser ophthalmoscopy. Trans Am Ophthalmol Soc. 2007;105:121.

    PubMed  PubMed Central  Google Scholar 

  43. Sebag J. Vitreoschisis. Graefes Arch Clin Exp Ophthalmol. 2008;246(3):329–32.

    PubMed  CAS  PubMed Central  Google Scholar 

  44. Sakamoto T, Ishibashi T. Hyalocytes: essential cells of the vitreous cavity in vitreoretinal pathophysiology? Retina. 2011;31(2):222.

    PubMed  CAS  Google Scholar 

  45. Jacobson B. Identification of sialyl and galactosyl transferase activities in calf vitreous hyalocytes. Curr Eye Res. 1984;3(8):1033–41.

    PubMed  CAS  Google Scholar 

  46. Noyes HD. Detachment of retina with laceration at macula. Trans Am Ophthalmol Soc. 1871;1(8):128.

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Gifford SR. An evaluation of ocular angiospasm. Trans Am Ophthalmol Soc. 1943;48:19.

    Google Scholar 

  48. Gupta P, Sadun AA, Sebag J. Multifocal retinal contraction in macular pucker analyzed by combined optical coherence tomography/scanning laser ophthalmoscopy. Retina. 2008;28(3):447–52.

    PubMed  Google Scholar 

  49. Kishi S, Shimizu K. Oval defect in detached posterior hyaloid membrane in idiopathic preretinal macular fibrosis. Am J Ophthalmol. 1994;118(4):451.

    PubMed  CAS  Google Scholar 

  50. Sidd R, Fine S, Owens S, Patz A. Idiopathic preretinal gliosis. Am J Ophthalmol. 1982;94(1):44.

    PubMed  CAS  Google Scholar 

  51. Wise G. Clinical features of idiopathic preretinal macular fibrosis. Schoenberg Lecture. Am J Ophthalmol. 1975;79(3):349.

    PubMed  CAS  Google Scholar 

  52. Foos R, Wheeler N. Vitreoretinal juncture. Synchysis senilis and posterior vitreous detachment. Ophthalmology. 1982;89(12):1502–12.

    PubMed  CAS  Google Scholar 

  53. Lindner B. Acute posterior vitreous detachment and its retinal complications. Acta Ophthalmol. 1966;87:1–108.

    Google Scholar 

  54. Sebag J. Anomalous posterior vitreous detachment: a unifying concept in vitreo-retinal disease. Graefes Arch Clin Exp Ophthalmol. 2004;242(8):690–8.

    PubMed  CAS  Google Scholar 

  55. Balazs EA, Denlinger J. Aging changes in the vitreous. In: Aging and human visual function. Vol 2: Modern Aging Research. New York: Alan R Liss; 1982. p. 45–57.

    Google Scholar 

  56. Sebag J. Ageing of the vitreous. Eye (Lond). 1987;1(2):254–62.

    Google Scholar 

  57. Sebag J. Age-related changes in human vitreous structure. Graefes Arch Clin Exp Ophthalmol. 1987;225(2):89–93.

    PubMed  CAS  Google Scholar 

  58. Johnson MW. Perifoveal vitreous detachment and its macular complications. Trans Am Ophthalmol Soc. 2005;103:537.

    PubMed  PubMed Central  Google Scholar 

  59. Jaffe NS. Complications of acute posterior vitreous detachment. Arch Ophthalmol. 1968;79(5):568–71.

    PubMed  CAS  Google Scholar 

  60. Jaffe N. Macular retinopathy after separation of vitreo-retinal adherence. Arch Ophthalmol. 1967;78:585.

    PubMed  CAS  Google Scholar 

  61. Jaffe N. Vitreous traction at the posterior pole of the fundus clue to alterations in the vitreous posterior. Trans Am Acad Ophthalmol Otolaryngol. 1967;71.

    Google Scholar 

  62. Tanenbaum HL, Schepens CL, Elzeneiny I, Freeman HM. Macular pucker following retinal detachment surgery. Arch Ophthalmol. 1970;83(3):286.

    PubMed  CAS  Google Scholar 

  63. Sebag J. Vitreous anatomy, aging, and anomalous posterior vitreous detachment. In: Dartt D, Besharse J, Dana R, editors. Encyclopedia of the eye. Oxford: Elsevier; 2010. p. 307–15.

    Google Scholar 

  64. Balazs EA. The vitreous. Int Ophthalmol Clin. 1973;13(3):169.

    PubMed  CAS  Google Scholar 

  65. Kakehashi A, Schepens CL, de Sousa-Neto A, Jalkh AE, Trempe CL. Biomicroscopic findings of posterior vitreoschisis. Ophthalmic Surg. 1993;24(12):846.

    PubMed  CAS  Google Scholar 

  66. Yamashita T, Uemura A, Sakamoto T. Intraoperative characteristics of the posterior vitreous cortex in patients with epiretinal membrane. Graefes Arch Clin Exp Ophthalmol. 2008;246(3):333–7.

    PubMed  Google Scholar 

  67. Gupta P, Yee KMP, Garcia P, Rosen RB, Parikh J, Hageman GS, Sadun AA, Sebag J. Vitreoschisis in macular diseases. Br J Ophthalmol. 2011;95(3):376–80.

    Google Scholar 

  68. Heilskov TW, Massicotte SJ, Folk JC. Epiretinal macular membranes in eyes with attached posterior cortical vitreous. Retina. 1996;16(4):279.

    PubMed  CAS  Google Scholar 

  69. Kishi S, Demaria C, Shimizu K. Vitreous cortex remnants at the fovea after spontaneous vitreous detachment. Int Ophthalmol. 1986;9(4):253–60.

    PubMed  CAS  Google Scholar 

  70. Zhao F, Gandorfer A, Haritoglou C, Scheler R, Schaumberger MM, Kampik A, et al. Epiretinal cell proliferation in macular pucker and vitreomacular traction syndrome: analysis of flat-mounted internal limiting membrane specimens. Retina. 2013;33(1):77–88.

    PubMed  Google Scholar 

  71. Kita T, Hata Y, Kano K, Miura M, Nakao S, Noda Y, et al. Transforming growth factor-β2 and connective tissue growth factor in proliferative vitreoretinal diseases possible involvement of hyalocytes and therapeutic potential of Rho kinase inhibitor. Diabetes. 2007;56(1):231–8.

    PubMed  CAS  Google Scholar 

  72. Hirayama K, Hata Y, Noda Y, Miura M, Yamanaka I, Shimokawa H, et al. The involvement of the rho-kinase pathway and its regulation in cytokine-induced collagen gel contraction by hyalocytes. Invest Ophthalmol Vis Sci. 2004;45(11):3896–903.

    PubMed  Google Scholar 

  73. Chen T, Yang C, Liu K. Intravitreal triamcinolone staining observation of residual undetached cortical vitreous after posterior vitreous detachment. Eye (Lond). 2005;20(4):423–7.

    Google Scholar 

  74. Wilkins JR, Puliafito CA, Hee MR, Duker JS, Reichel E, Coker JG, et al. Characterization of epiretinal membranes using optical coherence tomography. Ophthalmology. 1996;103(12):2142.

    PubMed  CAS  Google Scholar 

  75. Sebag J, Wang MY, Nguyen D, Sadun AA. Vitreopapillary adhesion in macular diseases. Trans Am Ophthalmol Soc. 2009;107:35.

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Okamoto F, Sugiura Y, Okamoto Y, Hiraoka T, Oshika T. Associations between metamorphopsia and foveal microstructure in patients with epiretinal membrane. Invest Ophthalmol Vis Sci. 2012;53(11):6770–5.

    PubMed  Google Scholar 

  77. Niwa T, Terasaki H, Kondo M, Piao C-H, Suzuki T, Miyake Y. Function and morphology of macula before and after removal of idiopathic epiretinal membrane. Invest Ophthalmol Vis Sci. 2003;44(4):1652–6.

    PubMed  Google Scholar 

  78. Oster SF, Mojana F, Brar M, Yuson R, Cheng L, Freeman WR. Disruption of the photoreceptor inner segment/outer segment layer on spectral domain-optical coherence tomography is a predictor of poor visual acuity in patients with epiretinal membranes. Retina. 2010;30(5):713.

    PubMed  Google Scholar 

  79. Suh MH, Seo JM, Park KH, Yu HG. Associations between macular findings by optical coherence tomography and visual outcomes after epiretinal membrane removal. Am J Ophthalmol. 2009;147(3):473.

    PubMed  Google Scholar 

  80. Kofod M, la Cour M. Quantification of retinal tangential movement in epiretinal membranes. Ophthalmology. 2012;119(9): 1886–91.

    PubMed  Google Scholar 

  81. Arimura E, Matsumoto C, Okuyama S, Takada S, Hashimoto S, Shimomura Y. Retinal contraction and metamorphopsia scores in eyes with idiopathic epiretinal membrane. Invest Ophthalmol Vis Sci. 2005;46(8):2961–6.

    PubMed  Google Scholar 

  82. Watanabe A, Arimoto S, Nishi O. Correlation between metamorphopsia and epiretinal membrane optical coherence tomography findings. Ophthalmology. 2009;116(9):1788–93.

    PubMed  Google Scholar 

  83. Gass JDM. Stereoscopic atlas of macular diseases: diagnosis and treatment. St. Louis: Mosby; 1987.

    Google Scholar 

  84. Johnson TM, Johnson MW. Epiretinal membrane. In: Yanoff M, Duker JS, editors. Ophthalmology. St. Louis: Mosby; 2004. p. 686–7.

    Google Scholar 

  85. Wiznia R. Natural history of idiopathic preretinal macular fibrosis. Ann Ophthalmol. 1982;14(9):876.

    PubMed  CAS  Google Scholar 

  86. Yazici AT, Alagöz N, Çelik HU, Bozkurt E, Alagöz C, Çakir M, et al. Idiopathic and secondary epiretinal membranes: do they differ in terms of morphology? An optical coherence tomography–based study. Retina. 2011;31(4):779.

    PubMed  Google Scholar 

  87. Donati G, Kapetanios AD, Pournaras CJ. Complications of surgery for epiretinal membranes. Graefes Arch Clin Exp Ophthalmol. 1998;236(10):739–46.

    PubMed  CAS  Google Scholar 

  88. Kinoshita T, Imaizumi H, Okushiba U, Miyamoto H, Ogino T, Mitamura Y. Time course of changes in metamorphopsia, visual acuity, and OCT parameters after successful epiretinal membrane surgery. Invest Ophthalmol Vis Sci. 2012;53(7):3592–7.

    PubMed  Google Scholar 

  89. Vingolo EM, Esposito M, Librando A, Huang YH, Salvatore S. New retinal imaging for the visualization and analysis of vitreoretinal interface (VRI) by short-wavelength scanning laser ophthalmoscope (swSLO). Clin Ophthalmol. 2011;5:1007.

    PubMed  PubMed Central  Google Scholar 

  90. Appiah A, Hirose T. Secondary causes of premacular fibrosis. Ophthalmology. 1989;96(3):389.

    PubMed  CAS  Google Scholar 

  91. Uemura A, Ideta H, Nagasaki H, Morita H, Ito K. Macular pucker after retinal detachment surgery. Ophthalmic Surg. 1992;23(2):116.

    PubMed  CAS  Google Scholar 

  92. Benichou C, Flament J. Epiretinal membrane and photocoagulation with argon laser. Discussion of 3 cases. Bull Soc Ophtalmol Fr. 1989;89(4):613.

    PubMed  CAS  Google Scholar 

  93. Carney MD, Jampol LM. Epiretinal membranes in sickle cell retinopathy. Arch Ophthalmol. 1987;105(2):214.

    PubMed  CAS  Google Scholar 

  94. Mori K, Gehlbach PL, Sano A, Deguchi T, Yoneya S. Comparison of epiretinal membranes of differing pathogenesis using optical coherence tomography. Retina. 2004;24(1):57–62.

    PubMed  Google Scholar 

  95. Sheard RM, Sethi C, Gregor Z. Acute macular pucker. Ophthalmology. 2003;110(6):1178–84.

    PubMed  Google Scholar 

  96. Do DV, Cho M, Nguyen QD, Shah SM, Handa JT, Campochiaro PA, et al. Impact of optical coherence tomography on surgical decision making for epiretinal membranes and vitreomacular traction. Retina. 2007;27(5):552–6.

    PubMed  Google Scholar 

  97. Michalewski J, Michalewska Z, Cisiecki S, Nawrocki J. Morphologically functional correlations of macular pathology connected with epiretinal membrane formation in spectral optical coherence tomography (SOCT). Graefes Arch Clin Exp Ophthalmol. 2007;245(11):1623–31.

    PubMed  Google Scholar 

  98. Wang MY, Nguyen D, Hindoyan N, SADUN AA, Sebag J. Vitreo-papillary adhesion in macular hole and macular pucker. Retina. 2009;29(5):644–50.

    PubMed  Google Scholar 

  99. Reese A, Jones I, Cooper W. Macular changes secondary to vitreous traction. Trans Am Ophthalmol Soc. 1966;64:123.

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Chang LK, Fine HF, Spaide RF, Koizumi H, Grossniklaus HE. Ultrastructural correlation of spectral-domain optical coherence tomographic findings in vitreomacular traction syndrome. Am J Ophthalmol. 2008;146(1):121–7.

    PubMed  PubMed Central  Google Scholar 

  101. Gandorfer A, Rohleder M, Kampik A. Epiretinal pathology of vitreomacular traction syndrome. Br J Ophthalmol. 2002;86(8):902–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  102. Wall M, May D. Threshold Amsler grid testing in maculopathies. Ophthalmology. 1987;94(9):1126–33.

    PubMed  CAS  Google Scholar 

  103. Nazemi PP, Fink W, Lim JI, Sadun AA. Scotomas of age-related macular degeneration detected and characterized by means of a novel three-dimensional computer-automated visual field test. Retina. 2005;25(4):446–53.

    PubMed  Google Scholar 

  104. Jivrajka RV, Kim JK, Fink W, et al. Quantitative analysis of central visual field defects in macular edema using three-dimensional computer-automated threshold Amsler grid testing. Graefes Arch Clin Exp Ophthalmol. 2009;247:165–70.

    PubMed  Google Scholar 

  105. Robison CD, Jivrajka RV, Bababeygy SR, Fink W, Sadun AA, Sebag J. Distinguishing wet from dry age-related macular degeneration using three-dimensional computer-automated threshold Amsler grid testing. Br J Ophthalmol. 2011;95(10):1419–23.

    PubMed  Google Scholar 

  106. Nguyen J, Yee K, Wa C, Sadun AA, Sebag J. Macular Pucker lowers contrast sensitivity which improves after surgery. IOVS (ARVO). 2014.

    Google Scholar 

  107. Sebag J, Yee KMP, Huang L, Wa C, Sadun AA. Vitrectomy for floaters – prospective efficacy analyses and retrospective safety profile. Retina. 2014;34(6):1062–8. PMID: 24296397.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sebag MD, FACS, FRCOphth, FARVO .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Video III.F-1

(MP4 131278 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tozer, K., Sebag, J. (2014). III.F. Vitreous in the Pathobiology of Macular Pucker. In: Sebag, J. (eds) Vitreous. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1086-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1086-1_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1085-4

  • Online ISBN: 978-1-4939-1086-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics