Skip to main content

Peripheral Neuroimmune Interactions and Neuropathic Pain

  • Chapter
  • First Online:
Neuroinflammation and Neurodegeneration
  • 1963 Accesses

Abstract

Neuropathic pain often results from damage to peripheral nerves, which can mobilize the immune system, as in Guillain-Barré syndrome, postherpetic neuralgia, or trauma. Although most studies focused on detrimental effects of neuroinflammation, recent experimental data provide evidence on analgesic effects of leukocytes. Pain-ameliorating actions involve anti-inflammatory cytokines and immune cell-derived opioid peptides, which activate opioid receptors on peripheral terminals of sensory neurons in injured nerves. In addition, endocannabinoids are present in leukocytes, and mechanisms involved in the resolution of inflammation are mounted, but their significance to neuropathic pain modulation is yet to be examined. Clinical evidence is less compelling, although in some conditions the occurrence of pain seems to be associated with lowered numbers of macrophages or T lymphocytes. This chapter discusses studies addressing both unfavorable and beneficial actions of neuroinflammation in the regulation of painful neuropathies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCI:

Chronic constriction injury

CRF:

Corticotropin-releasing factor

CXCL:

Chemokine (C-X-C motif) ligand

DRG:

Dorsal root ganglion

ICAM-1:

Intercellular adhesion molecule-1

IL:

Interleukin

PSNL:

Partial sciatic nerve ligation

SNL:

Spinal nerve ligation

TNF:

Tumor necrosis factor

References

  1. Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol. 2010;9(8):807–19.

    Article  PubMed  Google Scholar 

  2. Bennett GJ. What is spontaneous pain and who has it? J Pain. 2012;13(10):921–9.

    Article  PubMed  Google Scholar 

  3. Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci. 2009;32:1–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Nickel FT, Seifert F, Lanz S, Maihöfner C. Mechanisms of neuropathic pain. Eur Neuropsychopharmacol. 2012;22(2):81–91.

    Article  CAS  PubMed  Google Scholar 

  5. Zak-Prelich M, McKenzie RC, Sysa-Jedrzejowska A, Norval M. Local immune responses and systemic cytokine responses in zoster: relationship to the development of postherpetic neuralgia. Clin Exp Immunol. 2003;131(2):318–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Nyland H, Matre R, Mørk S. Immunological characterization of sural nerve biopsies from patients with Guillain-Barré syndrome. Ann Neurol. 1981;9(suppl):80–6.

    Article  PubMed  Google Scholar 

  7. Benoliel R, Epstein J, Eliav E, Jurevic R, Elad S. Orofacial pain in cancer: part I-mechanisms. J Dent Res. 2007;86(6):491–505.

    Article  CAS  PubMed  Google Scholar 

  8. Stremmel C, Horn C, Eder S, Dimmler A, Lang W. The impact of immunological parameters on the development of phantom pain after major amputation. Eur J Vasc Endovasc Surg. 2005;30(1):79–82.

    Article  CAS  PubMed  Google Scholar 

  9. Machelska H. Dual peripheral actions of immune cells in neuropathic pain. Arch Immunol Ther Exp (Warsz). 2011;59(1):11–24.

    Article  CAS  Google Scholar 

  10. Calvo M, Dawes JM, Bennett DL. The role of the immune system in the generation of neuropathic pain. Lancet Neurol. 2012;11(7):629–42.

    Article  CAS  PubMed  Google Scholar 

  11. Watkins LR, Maier SF. Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiol Rev. 2002;82(4):981–1011.

    CAS  PubMed  Google Scholar 

  12. Scholz J, Woolf CJ. The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci. 2007;10(11):1361–8.

    Article  CAS  PubMed  Google Scholar 

  13. Uçeyler N, Schäfers M, Sommer C. Mode of action of cytokines on nociceptive neurons. Exp Brain Res. 2009;196(1):67–78.

    Article  PubMed  Google Scholar 

  14. Austin PJ, Moalem-Taylor G. The neuro-immune balance in neuropathic pain: involvement of inflammatory immune cells, immune-like glial cells and cytokines. J Neuroimmunol. 2010;229(1–2):26–50.

    Article  CAS  PubMed  Google Scholar 

  15. Sacerdote P, Franchi S, Moretti S, Castelli M, Procacci P, Magnaghi V, Panerai AE. Cytokine modulation is necessary for efficacious treatment of experimental neuropathic pain. J Neuroimmune Pharmacol. 2013;8(1):202–11.

    Article  PubMed  Google Scholar 

  16. Stein C, Machelska H. Modulation of peripheral sensory neurons by the immune system: implications for pain therapy. Pharmacol Rev. 2011;63(4):860–81.

    Article  CAS  PubMed  Google Scholar 

  17. Perkins NM, Tracey DJ. Hyperalgesia due to nerve injury: role of neutrophils. Neuroscience. 2000;101(3):745–57.

    Article  CAS  PubMed  Google Scholar 

  18. Nadeau S, Filali M, Zhang J, Kerr BJ, Rivest S, Soulet D, Iwakura Y, de Rivero Vaccari JP, Keane RW, Lacroix S. Functional recovery after peripheral nerve injury is dependent on the pro-inflammatory cytokines IL-1β and TNF: implications for neuropathic pain. J Neurosci. 2011;31(35):12533–42.

    Article  CAS  PubMed  Google Scholar 

  19. Zuo Y, Perkins NM, Tracey DJ, Geczy CL. Inflammation and hyperalgesia induced by nerve injury in the rat: a key role of mast cells. Pain. 2003;105(3):467–79.

    Article  PubMed  Google Scholar 

  20. Sommer C, Schäfers M. Painful mononeuropathy in C57BL/Wld mice with delayed Wallerian degeneration: differential effects of cytokine production and nerve regeneration on thermal and mechanical hypersensitivity. Brain Res. 1998;784(1–2):154–62.

    Article  CAS  PubMed  Google Scholar 

  21. Liu T, van Rooijen N, Tracey DJ. Depletion of macrophages reduces axonal degeneration and hyperalgesia following nerve injury. Pain. 2000;86(1–2):25–32.

    Article  CAS  PubMed  Google Scholar 

  22. Rutkowski MD, Pahl JL, Sweitzer S, van Rooijen N, DeLeo JA. Limited role of macrophages in generation of nerve injury-induced mechanical allodynia. Physiol Behav. 2000;71(3–4): 225–35.

    Article  CAS  PubMed  Google Scholar 

  23. Barclay J, Clark AK, Ganju P, Gentry C, Patel S, Wotherspoon G, Buxton F, Song C, Ullah J, Winter J, Fox A, Bevan S, Malcangio M. Role of the cysteine protease cathepsin S in neuropathic hyperalgesia. Pain. 2007;130(3):225–34.

    Article  CAS  PubMed  Google Scholar 

  24. Moalem G, Xu K, Yu L. T lymphocytes play a role in neuropathic pain following peripheral nerve injury in rats. Neuroscience. 2004;129(3):767–77.

    Article  CAS  PubMed  Google Scholar 

  25. Kleinschnitz C, Hofstetter HH, Meuth SG, Braeuninger S, Sommer C, Stoll G. T cell infiltration after chronic constriction injury of mouse sciatic nerve is associated with interleukin-17 expression. Exp Neurol. 2006;200(2):480–5.

    Article  CAS  PubMed  Google Scholar 

  26. Cao L, DeLeo JA. CNS-infiltrating CD4+ T lymphocytes contribute to murine spinal nerve transection-induced neuropathic pain. Eur J Immunol. 2008;38(2):448–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Labuz D, Schreiter A, Schmidt Y, Brack A, Machelska H. T lymphocytes containing β-endorphin ameliorate mechanical hypersensitivity following nerve injury. Brain Behav Immun. 2010;24(7):1045–53.

    Article  CAS  PubMed  Google Scholar 

  28. Shubayev VI, Myers RR. Axonal transport of TNF-alpha in painful neuropathy: distribution of ligand tracer and TNF receptors. J Neuroimmunol. 2001;114(1–2):48–56.

    Article  CAS  PubMed  Google Scholar 

  29. Schäfers M, Geis C, Svensson CI, Luo ZD, Sommer C. Selective increase of tumour necrosis factor-alpha in injured and spared myelinated primary afferents after chronic constrictive injury of rat sciatic nerve. Eur J Neurosci. 2003;17(4):791–804.

    Article  PubMed  Google Scholar 

  30. Sorkin LS, Xiao WH, Wagner R, Myers RR. Tumour necrosis factor-alpha induces ectopic activity in nociceptive primary afferent fibres. Neuroscience. 1997;81(1):255–62.

    Article  CAS  PubMed  Google Scholar 

  31. Zelenka M, Schäfers M, Sommer C. Intraneural injection of interleukin-1beta and tumor necrosis factor-alpha into rat sciatic nerve at physiological doses induces signs of neuropathic pain. Pain. 2005;116(3):257–63.

    Article  CAS  PubMed  Google Scholar 

  32. Schäfers M, Lee DH, Brors D, Yaksh TL, Sorkin LS. Increased sensitivity of injured and adjacent uninjured rat primary sensory neurons to exogenous tumor necrosis factor-alpha after spinal nerve ligation. J Neurosci. 2003;23(7):3028–38.

    PubMed  Google Scholar 

  33. George A, Marziniak M, Schäfers M, Toyka KV, Sommer C. Thalidomide treatment in chronic constrictive neuropathy decreases endoneurial tumor necrosis factor-alpha, increases interleukin-10 and has long-term effects on spinal cord dorsal horn met-enkephalin. Pain. 2000;88(3):267–75.

    Article  CAS  PubMed  Google Scholar 

  34. Sommer C, Schäfers M, Marziniak M, Toyka KV. Etanercept reduces hyperalgesia in experimental painful neuropathy. J Peripher Nerv Syst. 2001;6(2):67–72.

    Article  CAS  PubMed  Google Scholar 

  35. Lindenlaub T, Teuteberg P, Hartung T, Sommer C. Effects of neutralizing antibodies to TNF-alpha on pain-related behavior and nerve regeneration in mice with chronic constriction injury. Brain Res. 2000;866(1–2):15–22.

    Article  CAS  PubMed  Google Scholar 

  36. Sommer C, Petrausch S, Lindenlaub T, Toyka KV. Neutralizing antibodies to interleukin 1-receptor reduce pain associated behavior in mice with experimental neuropathy. Neurosci Lett. 1999;270(1):25–8.

    Article  CAS  PubMed  Google Scholar 

  37. Martucci C, Trovato AE, Costa B, Borsani E, Franchi S, Magnaghi V, Panerai AE, Rodella LF, Valsecchi AE, Sacerdote P, Colleoni M. The purinergic antagonist PPADS reduces pain related behaviours and interleukin-1 beta, interleukin-6, iNOS and nNOS overproduction in central and peripheral nervous system after peripheral neuropathy in mice. Pain. 2008;137(1):81–95.

    Article  CAS  PubMed  Google Scholar 

  38. Valsecchi AE, Franchi S, Panerai AE, Sacerdote P, Trovato AE, Colleoni M. Genistein, a natural phytoestrogen from soy, relieves neuropathic pain following chronic constriction sciatic nerve injury in mice: anti-inflammatory and antioxidant activity. J Neurochem. 2008;107(1): 230–40.

    Article  CAS  PubMed  Google Scholar 

  39. Franchi S, Valsecchi AE, Borsani E, Procacci P, Ferrari D, Zalfa C, Sartori P, Rodella LF, Vescovi A, Maione S, Rossi F, Sacerdote P, Colleoni M, Panerai AE. Intravenous neural stem cells abolish nociceptive hypersensitivity and trigger nerve regeneration in experimental neuropathy. Pain. 2012;153(4):850–61.

    Article  PubMed  Google Scholar 

  40. Sacerdote P, Niada S, Franchi S, Arrigoni E, Rossi A, Yenagi V, de Girolamo L, Panerai AE, Brini AT. Systemic administration of human adipose-derived stem cells reverts nociceptive hypersensitivity in an experimental model of neuropathy. Stem Cells Dev. 2013;22(8):1252–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Lee S, Zhang J. Heterogeneity of macrophages in injured trigeminal nerves: cytokine/chemokine expressing vs phagocytic macrophages. Brain Behav Immun. 2012;26(6):891–903.

    Article  CAS  PubMed  Google Scholar 

  42. Wagner R, Janjigian M, Myers RR. Anti-inflammatory interleukin-10 therapy in CCI neuropathy decreases thermal hyperalgesia, macrophage recruitment, and endoneurial TNF-alpha expression. Pain. 1998;74(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  43. Hao S, Mata M, Glorioso JC, Fink DJ. HSV-mediated expression of interleukin-4 in dorsal root ganglion neurons reduces neuropathic pain. Mol Pain. 2006;2:6.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Kraus J. Regulation of mu-opioid receptors by cytokines. Front Biosci (Schol Ed). 2009;1:164–70.

    Article  Google Scholar 

  45. Hua S, Cabot PJ. Mechanisms of peripheral immune-cell-mediated analgesia in inflammation: clinical and therapeutic implications. Trends Pharmacol Sci. 2010;31(9):427–33.

    Article  CAS  PubMed  Google Scholar 

  46. Bodnar RJ. Endogenous opiates and behavior: 2012. Peptides. 2013;50:55–95.

    Article  CAS  PubMed  Google Scholar 

  47. Machelska H, Mousa SA, Brack A, Schopohl JK, Rittner HL, Schäfer M, Stein C. Opioid control of inflammatory pain regulated by intercellular adhesion molecule-1. J Neurosci. 2002;22(13):5588–96.

    CAS  PubMed  Google Scholar 

  48. Machelska H, Brack A, Mousa SA, Schopohl JK, Rittner HL, Schäfer M, Stein C. Selectins and integrins but not platelet-endothelial cell adhesion molecule-1 regulate opioid inhibition of inflammatory pain. Br J Pharmacol. 2004;142(4):772–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Brack A, Rittner HL, Machelska H, Leder K, Mousa SA, Schäfer M, Stein C. Control of inflammatory pain by chemokine-mediated recruitment of opioid-containing polymorphonuclear cells. Pain. 2004;112(3):229–38.

    Article  CAS  PubMed  Google Scholar 

  50. Cabot PJ, Carter L, Schäfer M, Stein C. Methionine-enkephalin-and Dynorphin A-release from immune cells and control of inflammatory pain. Pain. 2001;93(3):207–12.

    Article  CAS  PubMed  Google Scholar 

  51. Rittner HL, Labuz D, Schaefer M, Mousa SA, Schulz S, Schäfer M, Stein C, Brack A. Pain control by CXCR2 ligands through Ca2+-regulated release of opioid peptides from polymorphonuclear cells. FASEB J. 2006;20(14):2627–9.

    Article  CAS  PubMed  Google Scholar 

  52. Rittner HL, Hackel D, Voigt P, Mousa S, Stolz A, Labuz D, Schäfer M, Schaefer M, Stein C, Brack A. Mycobacteria attenuate nociceptive responses by formyl peptide receptor triggered opioid peptide release from neutrophils. PLoS Pathog. 2009;5(4):e1000362.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Schreiter A, Gore C, Labuz D, Fournie-Zaluski MC, Roques BP, Stein C, Machelska H. Pain inhibition by blocking leukocytic and neuronal opioid peptidases in peripheral inflamed tissue. FASEB J. 2012;26(12):5161–71.

    Article  CAS  PubMed  Google Scholar 

  54. Labuz D, Schmidt Y, Schreiter A, Rittner HL, Mousa SA, Machelska H. Immune cell-derived opioids protect against neuropathic pain in mice. J Clin Invest. 2009;119(2):278–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Liou JT, Liu FC, Mao CC, Lai YS, Day YJ. Inflammation confers dual effects on nociceptive processing in chronic neuropathic pain model. Anesthesiology. 2011;114(3):660–72.

    Article  PubMed  Google Scholar 

  56. Chao PK, Lu KT, Lee YL, Chen JC, Wang HL, Yang YL, Cheng MY, Liao MF, Ro LS. Early systemic granulocyte-colony stimulating factor treatment attenuates neuropathic pain after peripheral nerve injury. PLoS One. 2012;7(8):e43680.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Truong W, Cheng C, Xu QG, Li XQ, Zochodne DW. Mu opioid receptors and analgesia at the site of a peripheral nerve injury. Ann Neurol. 2003;53(3):366–75.

    Article  CAS  PubMed  Google Scholar 

  58. Kabli N, Cahill CM. Anti-allodynic effects of peripheral delta opioid receptors in neuropathic pain. Pain. 2007;127(1–2):84–93.

    Article  CAS  PubMed  Google Scholar 

  59. Tanasescu R, Constantinescu CS. Cannabinoids and the immune system: an overview. Immunobiology. 2010;215(8):588–97.

    Article  CAS  PubMed  Google Scholar 

  60. Clapper JR, Moreno-Sanz G, Russo R, Guijarro A, Vacondio F, Duranti A, Tontini A, Sanchini S, Sciolino NR, Spradley JM, Hohmann AG, Calignano A, Mor M, Tarzia G, Piomelli D. Anandamide suppresses pain initiation through a peripheral endocannabinoid mechanism. Nat Neurosci. 2010;13(10):1265–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Ji RR, Xu ZZ, Strichartz G, Serhan CN. Emerging roles of resolvins in the resolution of inflammation and pain. Trends Neurosci. 2011;34(11):599–609.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Uçeyler N, Sommer C. Cytokine regulation in animal models of neuropathic pain and in human diseases. Neurosci Lett. 2008;437(3):194–8.

    Article  PubMed  Google Scholar 

  63. Childs EA, Lyles RH, Selnes OA, Chen B, Miller EN, Cohen BA, Becker JT, Mellors J, McArthur JC. Plasma viral load and CD4 lymphocytes predict HIV-associated dementia and sensory neuropathy. Neurology. 1999;52(3):607–13.

    Article  CAS  PubMed  Google Scholar 

  64. Fromont A, De Seze J, Fleury MC, Maillefert JF, Moreau T. Inflammatory demyelinating events following treatment with anti-tumor necrosis factor. Cytokine. 2009;45(2):55–7.

    Article  CAS  PubMed  Google Scholar 

  65. Woodcock J. A difficult balance–pain management, drug safety, and the FDA. N Engl J Med. 2009;361(22):2105–7.

    Article  CAS  PubMed  Google Scholar 

  66. Rosen H, Abribat T. The rise and rise of drug delivery. Nat Rev Drug Discov. 2005;4(5): 381–5.

    Article  CAS  PubMed  Google Scholar 

  67. Stein C. Opioids, sensory systems and chronic pain. Eur J Pharmacol. 2013;716(1–3):179–87.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halina Machelska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Machelska, H. (2014). Peripheral Neuroimmune Interactions and Neuropathic Pain. In: Peterson, P., Toborek, M. (eds) Neuroinflammation and Neurodegeneration. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1071-7_6

Download citation

Publish with us

Policies and ethics