Skip to main content

Neuroinflammation in Huntington’s Disease

  • Chapter
  • First Online:
Neuroinflammation and Neurodegeneration

Abstract

Huntington’s disease (HD) is a progressive, eventually terminal, neurodegenerative disease caused by autosomal-dominant mutations in the huntingtin gene (HTT). The early symptoms of HD typically include subtle changes in mood and/or cognition, as well as poor coordination and unsteady gait. These symptoms progressively worsen until coordinated movement is virtually impossible and mental abilities have declined to a state of dementia. There is no cure and patients generally succumb to comorbid complications within 20 years of onset. The mutation is an expansion of the CAG triplet repeat stretch in the HTT gene, resulting in an expanded poly-glutamine (polyQ) stretch in the huntingtin protein (HTT). The length of this CAG repeat correlates strongly with the age of onset as well as the rate of disease progression. The ability to identify at-risk individuals by genetic testing enabled researchers to conduct clinical studies and learn about early events in the development of HD. One of the earliest pathological changes observed in the CNS of HD patients is the appearance of neuroinflammation, preceding overt neurodegeneration or protein aggregation. Here we will review the data implicating neuroinflammation in all stages of HD, from initiation to progression. We will also explore the most recent advances in our understanding of neuroinflammation in HD including a potential role for the peripheral immune system. We will also discuss how these various biologies may lead the way to discovery of novel, innovative, and urgently needed therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

ApoE:

Apolipoprotein epsilon

ApoJ:

Apolipoprotein J

ATP:

Adenosine triphosphate

B cell:

Bone marrow-derived lymphocyte

BBB:

Blood–brain barrier

BDNF:

Brain-derived neurotrophic factor

CB2R:

Cannabinoid receptor 2

CCL5:

Chemokine (C–C motif) ligand 5 (also CCL5)

CNS:

Central nervous system

CXCL1:

Chemokine (C–X–C motif) ligand 1 (GROα, KC)

EAAT2:

Excitatory amino acid transporter 2

GABA:

Gama-aminobutyric acid (inhibitory neurotransmitter)

GFP:

Green fluorescent protein

HD:

Huntington’s disease

HTT:

Huntingtin’s protein

HTT :

Human huntingtin’s gene

Htt :

Mouse huntingtin’s gene

Iba1:

Ionized Ca2+-binding adapter molecule 1 [Allograft inflammatory factor 1 (AIF1)]

IKK:

IκB kinase

IL-10:

Interleukin 10

IL-4:

Interleukin 4

IL-6:

Interleukin 6

KCNN4:

K+ intermediate/small conductance Ca2+-activated channel, subfamily N, member 4

KMO:

Kynurenine 3-monooxygenase

LRP:

Lipoprotein receptor-related proteins

MCP-1:

Monocyte chemotactic protein-1 [Chemokine (C-C motif) ligand 2 (CCL2)]

MCP-4:

Monocyte chemotactic protein-4 [Chemokine (C–C motif) ligand 13 (CCL13)]

MIP-1β:

Macrophage inflammatory protein-1β, CCL4 [Chemokine (C-C motif) ligand 4]

MS:

Multiple sclerosis

NAD+ :

Nicotine adenine dinucleotide

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NMDA:

N-methyl-d-aspartate

NO:

Nitric oxide

P2X4:

P2X purinoceptor 4

P2X7:

P2X purinoceptor 7

PD:

Parkinson’s disease

PolyQ:

Poly-glutamine stretch

PrP:

Prion protein

Q:

Glutamine

RANTES:

Regulated on activation, normal T cell expressed and secreted

ROS:

Reactive oxygen species (superoxide, hydrogen peroxide, etc.)

SSRI:

Selective serotonin reuptake inhibitor

T cell:

Thymus-derived lymphocyte

TGF-β:

Transforming growth factor β

TLR4:

Toll-like receptor 4

TRPM2:

Transient receptor potential cation channel, subfamily M, member 2

VGCC:

Voltage-gated Ca2+ channels

References

  1. Vonsattel JP, DiFiglia M. Huntington disease. J Neuropathol Exp Neurol. 1998;57(5):369–84.

    Article  CAS  PubMed  Google Scholar 

  2. Walker FO. Huntington’s disease. Semin Neurol. 2007;27(2):143–50.

    Article  PubMed  Google Scholar 

  3. Rubinsztein DC, Carmichael J. Huntington’s disease: molecular basis of neurodegeneration. Expert Rev Mol Med. 2003;5(20):1–21. Epub 2003/10/31.

    Article  PubMed  Google Scholar 

  4. Truant R, Atwal RS, Desmond C, Munsie L, Tran T. Huntington’s disease: revisiting the aggregation hypothesis in polyglutamine neurodegenerative diseases. FEBS J. 2008;275(17):4252–62. Epub 2008/07/22.

    Article  CAS  PubMed  Google Scholar 

  5. Lobsiger CS, Cleveland DW. Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nat Neurosci. 2007;10(11):1355–60. Epub 2007/10/30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Garden GA, Möller T. Microglia biology in health and disease. J Neuroimmune Pharmacol. 2006;1(2):127–37.

    Article  PubMed  Google Scholar 

  7. Raibon E, Todd LM, Moller T. Glial cells in ALS: the missing link? Phys Med Rehabil Clin N Am. 2008;19(3):441–59.

    Article  PubMed  Google Scholar 

  8. McGeer PL, McGeer EG, Itagaki S, Mizukawa K. Anatomy and pathology of the basal ganglia. Can J Neurol Sci. 1987;14(3 Suppl):363–72. Epub 1987/08/01.

    CAS  PubMed  Google Scholar 

  9. McGeer PL, Itagaki S, McGeer EG. Expression of the histocompatibility glycoprotein HLA-DR in neurological disease. Acta Neuropathol. 1988;76(6):550–7.

    Article  CAS  PubMed  Google Scholar 

  10. Möller T. Neuroinflammation in Huntington’s disease. J Neural Transm. 2010;117(8):1001–8. Epub 2010/06/11.

    Article  PubMed  Google Scholar 

  11. Silvestroni A, Faull RL, Strand AD, Moller T. Distinct neuroinflammatory profile in post-mortem human Huntington’s disease. Neuroreport. 2009;20(12):1098–103. Epub 2009/07/11.

    Article  PubMed  Google Scholar 

  12. Hanisch UK. Microglia as a source and target of cytokines. Glia. 2002;40(2):140–55.

    Article  PubMed  Google Scholar 

  13. Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007;10(11):1387–94.

    Article  CAS  PubMed  Google Scholar 

  14. Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57–69. Epub 2006/12/21.

    Article  CAS  PubMed  Google Scholar 

  15. van Rossum D, Hanisch UK. Microglia. Metab Brain Dis. 2004;19(3–4):393–411.

    Article  PubMed  Google Scholar 

  16. Sugama S, Takenouchi T, Cho BP, Joh TH, Hashimoto M, Kitani H. Possible roles of microglial cells for neurotoxicity in clinical neurodegenerative diseases and experimental animal models. Inflamm Allergy Drug Targets. 2009;8(4):277–84. Epub 2009/09/17.

    Article  CAS  PubMed  Google Scholar 

  17. Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F, Barker RA, et al. Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology. 2006;66(11):1638–43. Epub 2006/06/14.

    Article  CAS  PubMed  Google Scholar 

  18. Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, et al. Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain. 2007;130(Pt 7):1759–66. Epub 2007/04/03.

    Article  PubMed  Google Scholar 

  19. Singhrao SK, Neal JW, Morgan BP, Gasque P. Increased complement biosynthesis by microglia and complement activation on neurons in Huntington’s disease. Exp Neurol. 1999;159(2):362–76.

    Article  CAS  PubMed  Google Scholar 

  20. Simmons DA, Casale M, Alcon B, Pham N, Narayan N, Lynch G. Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington’s disease. Glia. 2007;55(10):1074–84. Epub 2007/06/07.

    Article  PubMed  Google Scholar 

  21. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson Jr EP. Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol. 1985;44(6):559–77.

    Article  CAS  PubMed  Google Scholar 

  22. Kraft AD, Kaltenbach LS, Lo DC, Harry GJ. Activated microglia proliferate at neurites of mutant huntingtin-expressing neurons. Neurobiol Aging. 2012;33(3):621 e17–33. Epub 2011/04/13.

    Article  Google Scholar 

  23. Carroll MC. The complement system in regulation of adaptive immunity. Nat Immunol. 2004;5(10):981–6. Epub 2004/09/30.

    Article  CAS  PubMed  Google Scholar 

  24. Hauwel M, Furon E, Canova C, Griffiths M, Neal J, Gasque P. Innate (inherent) control of brain infection, brain inflammation and brain repair: the role of microglia, astrocytes, “protective” glial stem cells and stromal ependymal cells. Brain Res Brain Res Rev. 2005;48(2):220–33. Epub 2005/04/27.

    Article  CAS  PubMed  Google Scholar 

  25. Bonifati DM, Kishore U. Role of complement in neurodegeneration and neuroinflammation. Mol Immunol. 2007;44(5):999–1010. Epub 2006/05/16.

    Article  CAS  PubMed  Google Scholar 

  26. Griffiths MR, Gasque P, Neal JW. The multiple roles of the innate immune system in the regulation of apoptosis and inflammation in the brain. J Neuropathol Exp Neurol. 2009;68(3):217–26. Epub 2009/02/20.

    Article  CAS  PubMed  Google Scholar 

  27. Nolte C, Moller T, Walter T, Kettenmann H. Complement 5a controls motility of murine microglial cells in vitro via activation of an inhibitory G-protein and the rearrangement of the actin cytoskeleton. Neuroscience. 1996;73(4):1091–107.

    Article  CAS  PubMed  Google Scholar 

  28. Larkin PB, Muchowski PJ. Genetic deficiency of complement component 3 does not alter disease progression in a mouse model of Huntington’s disease. J Huntingtons Dis. 2012;1(1):107–18. Epub 2012/10/26.

    PubMed Central  PubMed  Google Scholar 

  29. Stephan AH, Barres BA, Stevens B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci. 2012;35:369–89. Epub 2012/06/22.

    Article  CAS  PubMed  Google Scholar 

  30. Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, et al. Imaging microglial activation in Huntington’s disease. Brain Res Bull. 2007;72(2–3):148–51.

    Article  CAS  PubMed  Google Scholar 

  31. Hertz L, Zhao Z, Chen Y. The astrocytic GABA(A)/benzodiazepine-like receptor: the Joker receptor for benzodiazepine-mimetic drugs? Recent Pat CNS Drug Discov. 2006;1(1):93–103. Epub 2008/01/29.

    Article  CAS  PubMed  Google Scholar 

  32. Li SH, Schilling G, Young 3rd WS, Li XJ, Margolis RL, Stine OC, et al. Huntington’s disease gene (IT15) is widely expressed in human and rat tissues. Neuron. 1993;11(5):985–93.

    Article  CAS  PubMed  Google Scholar 

  33. Trottier Y, Lutz Y, Stevanin G, Imbert G, Devys D, Cancel G, et al. Polyglutamine expansion as a pathological epitope in Huntington’s disease and four dominant cerebellar ataxias. Nature. 1995;378(6555):403–6.

    Article  CAS  PubMed  Google Scholar 

  34. Hsiao HY, Chern Y. Targeting glial cells to elucidate the pathogenesis of Huntington’s disease. Mol Neurobiol. 2010;41(2–3):248–55. Epub 2010/01/29.

    Google Scholar 

  35. Lievens JC, Woodman B, Mahal A, Spasic-Boscovic O, Samuel D, Kerkerian-Le Goff L, et al. Impaired glutamate uptake in the R6 Huntington’s disease transgenic mice. Neurobiol Dis. 2001;8(5):807–21. Epub 2001/10/11.

    Article  CAS  PubMed  Google Scholar 

  36. Shin JY, Fang ZH, Yu ZX, Wang CE, Li SH, Li XJ. Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol. 2005;171(6):1001–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Adachi H, Kume A, Li M, Nakagomi Y, Niwa H, Do J, et al. Transgenic mice with an expanded CAG repeat controlled by the human AR promoter show polyglutamine nuclear inclusions and neuronal dysfunction without neuronal cell death. Hum Mol Genet. 2001;10(10):1039–48. Epub 2001/05/02.

    Article  CAS  PubMed  Google Scholar 

  38. Ishiguro H, Yamada K, Sawada H, Nishii K, Ichino N, Sawada M, et al. Age-dependent and tissue-specific CAG repeat instability occurs in mouse knock-in for a mutant Huntington’s disease gene. J Neurosci Res. 2001;65(4):289–97. Epub 2001/08/09.

    Article  CAS  PubMed  Google Scholar 

  39. Gu X, Andre VM, Cepeda C, Li SH, Li XJ, Levine MS, et al. Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington’s disease. Mol Neurodegener. 2007;2:8.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Bradford J, Shin JY, Roberts M, Wang CE, Li XJ, Li S. Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci U S A. 2009;106(52):22480–5. Epub 2009/12/19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Bradford J, Shin JY, Roberts M, Wang CE, Sheng G, Li S, et al. Mutant huntingtin in glial cells exacerbates neurological symptoms of Huntington disease mice. J Biol Chem. 2010;285(14):10653–61. Epub 2010/02/11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009;32(12):638–47. Epub 2009/09/29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Chou SY, Weng JY, Lai HL, Liao F, Sun SH, Tu PH, et al. Expanded-polyglutamine huntingtin protein suppresses the secretion and production of a chemokine (CCL5/RANTES) by astrocytes. J Neurosci. 2008;28(13):3277–90. Epub 2008/03/28.

    Article  CAS  PubMed  Google Scholar 

  44. Arzberger T, Krampfl K, Leimgruber S, Weindl A. Changes of NMDA receptor subunit (NR1, NR2B) and glutamate transporter (GLT1) mRNA expression in Huntington’s disease–an in situ hybridization study. J Neuropathol Exp Neurol. 1997;56(4):440–54. Epub 1997/04/01.

    Article  CAS  PubMed  Google Scholar 

  45. Rothstein JD, Martin LJ, Kuncl RW. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med. 1992;326(22):1464–8. Epub 1992/05/28.

    Article  CAS  PubMed  Google Scholar 

  46. Zuccato C, Cattaneo E. Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol. 2009;5(6):311–22. Epub 2009/06/06.

    Article  CAS  PubMed  Google Scholar 

  47. Wang L, Lin F, Wang J, Wu J, Han R, Zhu L, et al. Expression of mutant N-terminal huntingtin fragment (htt552-100Q) in astrocytes suppresses the secretion of BDNF. Brain Res. 2012;1449:69–82. Epub 2012/03/14.

    Article  CAS  PubMed  Google Scholar 

  48. Giralt A, Friedman HC, Caneda-Ferron B, Urban N, Moreno E, Rubio N, et al. BDNF regulation under GFAP promoter provides engineered astrocytes as a new approach for long-term protection in Huntington’s disease. Gene Ther. 2010;17(10):1294–308. Epub 2010/05/14.

    Article  CAS  PubMed  Google Scholar 

  49. Arregui L, Benitez JA, Razgado LF, Vergara P, Segovia J. Adenoviral astrocyte-specific expression of BDNF in the striata of mice transgenic for Huntington’s disease delays the onset of the motor phenotype. Cell Mol Neurobiol. 2011;31(8):1229–43. Epub 2011/06/18.

    Article  CAS  PubMed  Google Scholar 

  50. Hsiao HY, Chen YC, Chen HM, Tu PH, Chern Y. A critical role of astrocyte-mediated nuclear factor-kappaB-dependent inflammation in Huntington’s disease. Hum Mol Genet. 2013;22(9):1826–42. Epub 2013/02/02.

    Google Scholar 

  51. Valenza M, Cattaneo E. Emerging roles for cholesterol in Huntington’s disease. Trends Neurosci. 2011;34(9):474–86. Epub 2011/07/22.

    Article  CAS  PubMed  Google Scholar 

  52. Menkes JH, Hanoch A. Huntington’s disease–growth of fibroblast cultures in lipid-deficient medium: a preliminary report. Ann Neurol. 1977;1(5):423–5. Epub 1977/05/01.

    Article  CAS  PubMed  Google Scholar 

  53. Barkley DS, Hardiwidjaja S, Menkes JH. Abnormalities in growth of skin fibroblasts of patients with Huntington’s disease. Ann Neurol. 1977;1(5):426–30. Epub 1977/05/01.

    Article  CAS  PubMed  Google Scholar 

  54. Maltese WA. Cholesterol synthesis in cultured skin fibroblasts from patients with Huntington’s disease. Biochem Med. 1984;32(1):144–50. Epub 1984/08/01.

    Article  CAS  PubMed  Google Scholar 

  55. Valenza M, Rigamonti D, Goffredo D, Zuccato C, Fenu S, Jamot L, et al. Dysfunction of the cholesterol biosynthetic pathway in Huntington’s disease. J Neurosci. 2005;25(43):9932–9. Epub 2005/10/28.

    Article  CAS  PubMed  Google Scholar 

  56. Sipione S, Rigamonti D, Valenza M, Zuccato C, Conti L, Pritchard J, et al. Early transcriptional profiles in huntingtin-inducible striatal cells by microarray analyses. Hum Mol Genet. 2002;11(17):1953–65. Epub 2002/08/08.

    Article  CAS  PubMed  Google Scholar 

  57. Valenza M, Leoni V, Tarditi A, Mariotti C, Bjorkhem I, Di Donato S, et al. Progressive dysfunction of the cholesterol biosynthesis pathway in the R6/2 mouse model of Huntington’s disease. Neurobiol Dis. 2007;28(1):133–42. Epub 2007/08/19.

    Article  CAS  PubMed  Google Scholar 

  58. Valenza M, Carroll JB, Leoni V, Bertram LN, Bjorkhem I, Singaraja RR, et al. Cholesterol biosynthesis pathway is disturbed in YAC128 mice and is modulated by huntingtin mutation. Hum Mol Genet. 2007;16(18):2187–98. Epub 2007/07/07.

    Article  CAS  PubMed  Google Scholar 

  59. Valenza M, Leoni V, Karasinska JM, Petricca L, Fan J, Carroll J, et al. Cholesterol defect is marked across multiple rodent models of Huntington’s disease and is manifest in astrocytes. J Neurosci. 2010;30(32):10844–50. Epub 2010/08/13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Yu C, Youmans KL, LaDu MJ. Proposed mechanism for lipoprotein remodelling in the brain. Biochim Biophys Acta. 2010;1801(8):819–23. Epub 2010/05/18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Saher G, Brugger B, Lappe-Siefke C, Mobius W, Tozawa R, Wehr MC, et al. High cholesterol level is essential for myelin membrane growth. Nat Neurosci. 2005;8(4):468–75. Epub 2005/03/29.

    CAS  PubMed  Google Scholar 

  62. Perry VH. Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathol. 2010;120(3):277–86. Epub 2010/07/21.

    Article  CAS  PubMed  Google Scholar 

  63. Rezai-Zadeh K, Gate D, Town T. CNS infiltration of peripheral immune cells: D-Day for neurodegenerative disease? J Neuroimmune Pharmacol. 2009;4(4):462–75. Epub 2009/08/12.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Leblhuber F, Walli J, Jellinger K, Tilz GP, Widner B, Laccone F, et al. Activated immune system in patients with Huntington’s disease. Clin Chem Lab Med. 1998;36(10):747–50. Epub 1998/12/16.

    Article  CAS  PubMed  Google Scholar 

  65. Wild E, Magnusson A, Lahiri N, Krus U, Orth M, Tabrizi SJ, et al. Abnormal peripheral chemokine profile in Huntington’s disease. PLoS Curr. 2011;3, RRN1231. Epub 2011/08/10.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Bjorkqvist M, Wild EJ, Thiele J, Silvestroni A, Andre R, Lahiri N, et al. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J Exp Med. 2008;205(8):1869–77. Epub 2008/07/16.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Kwan W, Magnusson A, Chou A, Adame A, Carson MJ, Kohsaka S, et al. Bone marrow transplantation confers modest benefits in mouse models of Huntington’s disease. J Neurosci. 2012;32(1):133–42. Epub 2012/01/06.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Weiss A, Trager U, Wild EJ, Grueninger S, Farmer R, Landles C, et al. Mutant huntingtin fragmentation in immune cells tracks Huntington’s disease progression. J Clin Invest. 2012;122(10):3731–6. Epub 2012/09/22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Menalled LB, Kudwa AE, Miller S, Fitzpatrick J, Watson-Johnson J, Keating N, et al. Comprehensive behavioral and molecular characterization of a new knock-in mouse model of Huntington’s disease: zQ175. PLoS One. 2012;7(12):e49838. Epub 2013/01/04.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Broux B, Markovic-Plese S, Stinissen P, Hellings N. Pathogenic features of CD4 + CD28- T cells in immune disorders. Trends Mol Med. 2012;18(8):446–53. Epub 2012/07/13.

    Article  CAS  PubMed  Google Scholar 

  71. Gendelman HE, Appel SH. Neuroprotective activities of regulatory T cells. Trends Mol Med. 2011;17(12):687–8. Epub 2011/10/15.

    Article  PubMed  Google Scholar 

  72. Henkel JS, Beers DR, Wen S, Rivera AL, Toennis KM, Appel JE, et al. Regulatory T-lymphocytes mediate amyotrophic lateral sclerosis progression and survival. EMBO Mol Med. 2013;5(1):64–79. Epub 2012/11/13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Ousman SS, Kubes P. Immune surveillance in the central nervous system. Nat Neurosci. 2012;15(8):1096–101. Epub 2012/07/28.

    Article  CAS  PubMed  Google Scholar 

  74. Hoarau JJ, Krejbich-Trotot P, Jaffar-Bandjee MC, Das T, Thon-Hon GV, Kumar S, et al. Activation and control of CNS innate immune responses in health and diseases: a balancing act finely tuned by neuroimmune regulators (NIReg). CNS Neurol Disord Drug Targets. 2011;10(1):25–43. Epub 2010/12/15.

    Article  CAS  PubMed  Google Scholar 

  75. Plane JM, Shen Y, Pleasure DE, Deng W. Prospects for minocycline neuroprotection. Arch Neurol. 2010;67(12):1442–8. Epub 2010/08/11.

    PubMed Central  PubMed  Google Scholar 

  76. Harry GJ, Kraft AD. Neuroinflammation and microglia: considerations and approaches for neurotoxicity assessment. Expert Opin Drug Metab Toxicol. 2008;4(10):1265–77. Epub 2008/09/19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Stack EC, Smith KM, Ryu H, Cormier K, Chen M, Hagerty SW, et al. Combination therapy using minocycline and coenzyme Q10 in R6/2 transgenic Huntington’s disease mice. Biochim Biophys Acta. 2006;1762(3):373–80.

    Article  CAS  PubMed  Google Scholar 

  78. Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S, et al. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med. 2000;6(7):797–801.

    Article  CAS  PubMed  Google Scholar 

  79. Blum D, Chtarto A, Tenenbaum L, Brotchi J, Levivier M. Clinical potential of minocycline for neurodegenerative disorders. Neurobiol Dis. 2004;17(3):359–66. Epub 2004/12/02.

    Article  CAS  PubMed  Google Scholar 

  80. Kim HS, Suh YH. Minocycline and neurodegenerative diseases. Behav Brain Res. 2009;196(2):168–79. Epub 2008/11/04.

    Article  CAS  PubMed  Google Scholar 

  81. Mievis S, Levivier M, Communi D, Vassart G, Brotchi J, Ledent C, et al. Lack of minocycline efficiency in genetic models of Huntington’s disease. Neuromolecular Med. 2007;9(1):47–54. Epub 2006/11/23.

    Article  CAS  PubMed  Google Scholar 

  82. Orsucci D, Calsolaro V, Mancuso M, Siciliano G. Neuroprotective effects of tetracyclines: molecular targets, animal models and human disease. CNS Neurol Disord Drug Targets. 2009;8(3):222–31. Epub 2009/07/16.

    Article  CAS  PubMed  Google Scholar 

  83. Moroni F. Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. Eur J Pharmacol. 1999;375(1–3):87–100. Epub 1999/08/12.

    Article  CAS  PubMed  Google Scholar 

  84. Amori L, Guidetti P, Pellicciari R, Kajii Y, Schwarcz R. On the relationship between the two branches of the kynurenine pathway in the rat brain in vivo. J Neurochem. 2009;109(2):316–25. Epub 2009/02/20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Schwarcz R, Guidetti P, Sathyasaikumar KV, Muchowski PJ. Of mice, rats and men: revisiting the quinolinic acid hypothesis of Huntington’s disease. Prog Neurobiol. 2010;90(2):230–45. Epub 2009/04/28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Schwarcz R, Whetsell Jr WO, Mangano RM. Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science. 1983;219(4582):316–8. Epub 1983/01/21.

    Article  CAS  PubMed  Google Scholar 

  87. Schwarcz R, Pellicciari R. Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther. 2002;303(1):1–10. Epub 2002/09/18.

    Article  CAS  PubMed  Google Scholar 

  88. Giorgini F. The kynurenine pathway and microglia: implications for pathology and therapy in Huntington’s disease. In: Outerio TF, editor. Protein misfolding in biology and disease. Kerala: Transworld Research Network; 2008. p. 231–55.

    Google Scholar 

  89. Giorgini F, Moller T, Kwan W, Zwilling D, Wacker JL, Hong S, et al. Histone deacetylase inhibition modulates kynurenine pathway activation in yeast, microglia, and mice expressing a mutant huntingtin fragment. J Biol Chem. 2008;283(12):7390–400. Epub 2007/12/15.

    Article  CAS  PubMed  Google Scholar 

  90. Giorgini F, Guidetti P, Nguyen Q, Bennett SC, Muchowski PJ. A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat Genet. 2005;37(5):526–31. Epub 2005/04/05.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Guillemin GJ, Smith DG, Smythe GA, Armati PJ, Brew BJ. Expression of the kynurenine pathway enzymes in human microglia and macrophages. Adv Exp Med Biol. 2003;527:105–12. Epub 2004/06/23.

    Article  CAS  PubMed  Google Scholar 

  92. Schwarcz R. The kynurenine pathway of tryptophan degradation as a drug target. Curr Opin Pharmacol. 2004;4(1):12–7. Epub 2004/03/17.

    Article  CAS  PubMed  Google Scholar 

  93. Stella N. Endocannabinoid signaling in microglial cells. Neuropharmacology. 2009;56 Suppl 1:244–53. Epub 2008/08/30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Palazuelos J, Aguado T, Pazos MR, Julien B, Carrasco C, Resel E, et al. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain. 2009;132(Pt 11):3152–64. Epub 2009/10/07.

    Article  PubMed  Google Scholar 

  95. Bouchard J, Truong J, Bouchard K, Dunkelberger D, Desrayaud S, Moussaoui S, et al. Cannabinoid receptor 2 signaling in peripheral immune cells modulates disease onset and severity in mouse models of Huntington’s disease. J Neurosci. 2012;32(50):18259–68. Epub 2012/12/15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Valdeolivas S, Satta V, Pertwee RG, Fernandez-Ruiz J, Sagredo O. Sativex-like combination of phytocannabinoids is neuroprotective in malonate-lesioned rats, an inflammatory model of Huntington’s disease: role of CB(1) and CB(2) receptors. ACS Chem Neurosci. 2012;3(5):400–6. Epub 2012/08/04.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Sagredo O, Gonzalez S, Aroyo I, Pazos MR, Benito C, Lastres-Becker I, et al. Cannabinoid CB2 receptor agonists protect the striatum against malonate toxicity: relevance for Huntington’s disease. Glia. 2009;57(11):1154–67. Epub 2008/12/31.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland G. W. Staal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Staal, R.G.W., Möller, T. (2014). Neuroinflammation in Huntington’s Disease. In: Peterson, P., Toborek, M. (eds) Neuroinflammation and Neurodegeneration. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1071-7_10

Download citation

Publish with us

Policies and ethics