Skip to main content

DNA Methylation Analysis of Steroid Hormone Receptor Genes

  • Protocol
  • First Online:
Cancer Cell Signaling

Abstract

Steroid hormone receptors (SHR) are important transcription factors for regulating different physiological and pathological processes. Their altered expression has been strongly associated to cancer progression. Epigenetic marks such as DNA methylation have been proposed as one of the regulatory mechanisms for SHR expression in cancer. DNA methylation occurs at CpG dinucleotides, which form clusters known as CpG islands. These islands are mostly observed at promoter regions of housekeeping genes, and their aberrant methylation in cancer cells is associated with silencing of tumor-suppressor gene expression. SHR genes are characterized for presenting alternative promoters with different CpG island content, which are prone to be methylated. The method of choice for studying DNA methylation is bisulfite sequencing, since it provides information about the methylation pattern at single-nucleotide level. The method is based on the deamination of cytosine residues to uracil after treatment with sodium bisulfite. The converted DNA is amplified by a polymerase chain reaction, cloned, and sequenced. Here, we describe a protocol for bisulfite sequencing suitable for analyzing different CpG regions in SHR genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griekspoor A, Zwart W, Neefjes J et al (2007) Visualizing the action of steroid hormone receptors in living cells. Nucl Recept Signal 5:1–9

    Article  Google Scholar 

  2. Ahmad N, Kumar R (2011) Steroid hormone receptors in cancer development: a target for cancer therapeutics. Cancer Lett 300:1–9

    Article  CAS  PubMed  Google Scholar 

  3. Green CD, Han JD (2011) Epigenetic regulation by nuclear receptors. Epigenomics 3:59–72

    Article  CAS  PubMed  Google Scholar 

  4. Mani SK, Mermelstein PG, Tetel MJ et al (2012) Convergence of multiple mechanisms of steroid hormone action. Horm Metab Res 44:569–576

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Berdasco M, Esteller M (2010) Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 19:698–711

    Article  CAS  PubMed  Google Scholar 

  6. Korlach J, Turner SW (2012) Going beyond five bases in DNA sequencing. Curr Opin Struct Biol 22:251–261

    Article  CAS  PubMed  Google Scholar 

  7. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28:1057–1068

    Article  CAS  PubMed  Google Scholar 

  8. Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25:1010–1022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Sandoval J, Esteller M (2012) Cancer epigenomics: beyond genomics. Curr Opin Genet Dev 22:50–55

    Article  CAS  PubMed  Google Scholar 

  10. Chatterjee R, Vinson C (2012) CpG methylation recruits sequence specific transcription factors essential for tissue specific gene expression. Biochim Biophys Acta 1819:763–770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Doi A, Park IH, Wen B et al (2009) Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 41:1350–1353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Nagae G, Isagawa T, Shiraki N et al (2011) Tissue-specific demethylation in CpG-poor promoters during cellular differentiation. Hum Mol Genet 20:2710–2721

    Article  CAS  PubMed  Google Scholar 

  13. Irizarry RA, Ladd-Acosta C, Wen B et al (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41:178–186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Brait M, Sidransky D (2011) Cancer epigenetics: above and beyond. Toxicol Mech Methods 21:275–288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Hayatsu H (2008) Discovery of bisulfite-mediated cytosine conversion to uracil, the key reaction for DNA methylation analysis—a personal account. Proc Jpn Acad Ser B Phys Biol Sci 84:321–330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Pappas JJ, Toulouse A, Bradley WE (2009) A modified protocol for bisulfite genomic sequencing of difficult samples. Biol Proced Online 11:99–112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Zhang Y, Rohde C, Tierling S et al (2009) DNA methylation analysis by bisulfite conversion, cloning, and sequencing of individual clones. Methods Mol Biol 507:177–187

    Article  CAS  PubMed  Google Scholar 

  18. Hansberg-Pastor V, Gonzalez-Arenas A, Pena-Ortiz MA et al (2013) The role of DNA methylation and histone acetylation in the regulation of progesterone receptor isoforms expression in human astrocytoma cell lines. Steroids 78:500–507

    Article  CAS  PubMed  Google Scholar 

  19. Sasaki M, Kaneuchi M, Fujimoto S et al (2003) Hypermethylation can selectively silence multiple promoters of steroid receptors in cancers. Mol Cell Endocrinol 202:201–207

    Article  CAS  PubMed  Google Scholar 

  20. Turner JD, Pelascini LP, Macedo JA et al (2008) Highly individual methylation patterns of alternative glucocorticoid receptor promoters suggest individualized epigenetic regulatory mechanisms. Nucleic Acids Res 36:7207–7218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Breslin MB, Geng CD, Vedeckis WV (2001) Multiple promoters exist in the human GR gene, one of which is activated by glucocorticoids. Mol Endocrinol 15:1381–1395

    Article  CAS  PubMed  Google Scholar 

  22. Takai D, Jones PA (2003) The CpG island searcher: a new WWW resource. In Silico Biol 3:235–240

    CAS  PubMed  Google Scholar 

  23. Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18:1427–1431

    Article  CAS  PubMed  Google Scholar 

  24. Lefever S, Hoebeeck J, Pattyn F et al (2010) methGraph: a genome visualization tool for PCR-based methylation assays. Epigenetics 5:159–163

    Article  CAS  PubMed  Google Scholar 

  25. Bonin S, Hlubek F, Benhattar J et al (2010) Multicentre validation study of nucleic acids extraction from FFPE tissues. Virchows Arch 457:309–317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Bonin S, Stanta G (2013) Nucleic acid extraction methods from fixed and paraffin-embedded tissues in cancer diagnostics. Expert Rev Mol Diagn 13:271–282

    Article  CAS  PubMed  Google Scholar 

  27. Darst RP, Pardo CE, Ai L et al (2010) Bisulfite sequencing of DNA. Curr Protoc Mol Biol Chapter 7, Unit 7 9:1–17.

    Google Scholar 

  28. Bock C, Reither S, Mikeska T et al (2005) BiQ analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics 21:4067–4068

    Article  CAS  PubMed  Google Scholar 

  29. Rohde C, Zhang Y, Reinhardt R et al (2010) BISMA-fast and accurate bisulfite sequencing data analysis of individual clones from unique and repetitive sequences. BMC Bioinformatics 11:230. doi:10.1186/1471-2105-11-230

    Article  PubMed Central  PubMed  Google Scholar 

  30. Boyd VL, Zon G (2004) Bisulfite conversion of genomic DNA for methylation analysis: protocol simplification with higher recovery applicable to limited samples and increased throughput. Anal Biochem 326:278–280

    Article  CAS  PubMed  Google Scholar 

  31. Dallol A, Al-Ali W, Al-Shaibani A et al (2011) Analysis of DNA methylation in FFPE tissues using the MethyLight technology. Methods Mol Biol 724:191–204

    Article  CAS  PubMed  Google Scholar 

  32. Pedersen IS, Krarup HB, Thorlacius-Ussing O et al (2012) High recovery of cell-free methylated DNA based on a rapid bisulfite-treatment protocol. BMC Mol Biol 13:12. doi:10.1186/1471-2199-13-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Ralser M, Querfurth R, Warnatz HJ et al (2006) An efficient and economic enhancer mix for PCR. Biochem Biophys Res Commun 347:747–751

    Article  CAS  PubMed  Google Scholar 

  34. Alba FJ, Bermudez A, Daban JR (2001) Green-light transilluminator for the detection without photodamage of proteins and DNA labeled with different fluorescent dyes. Electrophoresis 22:399–403

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Camacho-Arroyo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Camacho-Arroyo, I., Hansberg-Pastor, V., Rodríguez-Dorantes, M. (2014). DNA Methylation Analysis of Steroid Hormone Receptor Genes. In: Robles-Flores, M. (eds) Cancer Cell Signaling. Methods in Molecular Biology, vol 1165. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0856-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0856-1_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0855-4

  • Online ISBN: 978-1-4939-0856-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics