Skip to main content

Mathematics of Photoacoustic and Thermoacoustic Tomography

  • Reference work entry
Handbook of Mathematical Methods in Imaging

Abstract

The chapter surveys the mathematical models, problems, and algorithms of the thermoacoustic tomography (TAT) and photoacoustic tomography (PAT) . TAT and PAT represent probably the most developed of the several novel “hybrid” methods of medical imaging. These new modalities combine different physical types of waves (electromagnetic and acoustic in case of TAT and PAT) in such a way that the resolution and contrast of the resulting method are much higher than those achievable using only acoustic or electromagnetic measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agranovsky, M., Berenstein, C., Kuchment, P.: Approximation by spherical waves in L p-spaces. J. Geom. Anal. 6(3), 365–383 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Agranovsky, M., Finch, D., Kuchment, P.: Range conditions for a spherical mean transform. Inverse Probl. Imaging 3(3), 373–38 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Agranovsky, M., Kuchment, P.: Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed. Inverse Probl. 23, 2089–2102 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Agranovsky, M., Kuchment, P., Kunyansky, L.: On reconstruction formulas and algorithms for the thermoacoustic and photoacoustic tomography, chapter 8. In: Wang, L.H. (ed.) Photoacoustic Imaging and Spectroscopy, pp. 89–101. CRC, Boca Raton (2009)

    Chapter  Google Scholar 

  5. Agranovsky, M., Kuchment, P., Quinto, E.T.: Range descriptions for the spherical mean Radon transform. J. Funct. Anal. 248, 344–386 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Agranovsky, M., Nguyen, L.: Range conditions for a spherical mean transform and global extension of solutions of Darboux equation. J. d’Analyse Math. (2009). Preprint arXiv:0904.4225 (to appear)

    Google Scholar 

  7. Agranovsky, M., Quinto, E.T.: Injectivity sets for the Radon transform over circles and complete systems of radial functions. J. Funct. Anal. 139, 383–414 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ambartsoumian, G., Kuchment, P.: On the injectivity of the circular Radon transform. Inverse Probl. 21, 473–485 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ambartsoumian, G., Kuchment, P.: A range description for the planar circular Radon transform. SIAM J. Math. Anal. 38(2), 681–692 (2006)

    Article  MathSciNet  Google Scholar 

  10. Ammari, H.: An Introduction to Mathematics of Emerging Biomedical Imaging. Springer, Berlin (2008)

    MATH  Google Scholar 

  11. Ammari, H., Bonnetier, E., Capdebosq, Y., Tanter, M., Fink, M.: Electrical impedance tomography by elastic deformation. SIAM J. Appl. Math. 68(6), 1557–1573 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ammari, H., Bossy, E., Jugnon, V., Kang, H.: Quantitative photo-acoustic imaging of small absorbers. SIAM Rev. (to appear)

    Google Scholar 

  13. Anastasio, M.A., Zhang, J., Modgil, D., Rivière, P.J.: Application of inverse source concepts to photoacoustic tomography. Inverse Probl. 23, S21–S35 (2007)

    Article  MATH  Google Scholar 

  14. Anastasio, M., Zhang, J., Pan, X., Zou, Y., Ku, G., Wang, L.V.: Half-time image reconstruction in thermoacoustic tomography. IEEE Trans. Med. Imaging 24, 199–210 (2005)

    Article  Google Scholar 

  15. Anastasio, M.A., Zhang, J., Sidky, E.Y., Zou, Z., Dan, X., Pan, X.: Feasibility of half-data image reconstruction in 3-D reflectivity tomography with a spherical aperture. IEEE Trans Med. Imaging 24(9), 1100–1112 (2005)

    Article  Google Scholar 

  16. Andersson, L.-E.: On the determination of a function from spherical averages. SIAM J. Math. Anal. 19(1), 214–232 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Andreev, V., Popov, D., et al.: Image reconstruction in 3D optoacoustic tomography system with hemispherical transducer array. Proc. SPIE 4618, 137–145 (2002)

    Google Scholar 

  18. Bal, G., Jollivet, A., Jugnon, V.: Inverse transport theory of photoacoustics. Inverse Probl. 26, 025011 (2010). doi:10.1088/0266-5611/26/2/025011

    Article  MathSciNet  Google Scholar 

  19. Bell, A.G.: On the production and reproduction of sound by light. Am. J. Sci. 20, 305–324 (1880)

    Article  Google Scholar 

  20. Beylkin, G.: The inversion problem and applications of the generalized Radon transform. Commun. Pure Appl. Math. 37, 579–599 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  21. Bowen, T.: Radiation-induced thermoacoustic soft tissue imaging. Proc. IEEE Ultrason. Symp. 2, 817–822 (1981)

    Google Scholar 

  22. Burgholzer, P., Grün, H., Haltmeier, M., Nuster, R., Paltauf, G.: Compensation of acoustic attenuation for high-resolution photoacoustic imaging with line detectors using time reversal. In: Proceedings of the SPIE Number 6437–75 Photonics West, BIOS 2007, San Jose (2007)

    Google Scholar 

  23. Burgholzer, P., Hofer, C., Matt, G.J., Paltauf, G., Haltmeier, M., Scherzer, O.: Thermoacoustic tomography using a fiber-based Fabry–Perot interferometer as an integrating line detector. Proc. SPIE 6086, 434–442 (2006)

    Google Scholar 

  24. Burgholzer, P., Hofer, C., Paltauf, G., Haltmeier, M., Scherzer, O.: Thermoacoustic tomography with integrating area and line detectors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005)

    Article  Google Scholar 

  25. Clason, C., Klibanov, M.: The quasi-reversibility method in thermoacoustic tomography in a heterogeneous medium. SIAM J. Sci. Comput. 30, 1–23 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Colton, D., Paivarinta, L., Sylvester, J.: The interior transmission problem. Inverse Probl. 1(1), 13–28 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Courant, R., Hilbert, D.: Methods of Mathematical Physics. Partial Differential Equations, vol. II. Interscience, New York (1962)

    Google Scholar 

  28. Cox, B.T., Arridge, S.R., Beard, P.C.: Photoacoustic tomography with a limited aperture planar sensor and a reverberant cavity. Inverse Probl. 23, S95–S112 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Cox, B.T., Arridge, S.R., Beard, P.C.: Estimating chromophore distributions from multiwavelength photoacoustic images. J. Opt. Soc. Am. A 26, 443–455 (2009)

    Article  Google Scholar 

  30. Cox, B.T., Laufer, J.G., Beard, P.C.: The challenges for quantitative photoacoustic imaging. Proc. SPIE 7177, 717713 (2009)

    Google Scholar 

  31. Diebold, G.J., Sun, T., Khan, M.I.: Photoacoustic monopole radiation in one, two, and three dimensions. Phys. Rev. Lett. 67(24), 3384–3387 (1991)

    Article  Google Scholar 

  32. Egorov, Yu.V., Shubin, M.A.: Partial Differential Equations I. Encyclopaedia of Mathematical Sciences, vol. 30, pp. 1–259. Springer, Berlin (1992)

    Google Scholar 

  33. Faridani, A., Ritman, E.L., Smith, K.T.: Local tomography. SIAM J. Appl. Math. 52(4), 459–484 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  34. Fawcett, J.A.: Inversion of n-dimensional spherical averages. SIAM J. Appl. Math. 45(2), 336–341 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  35. Finch, D., Haltmeier, M., Rakesh: Inversion of spherical means and the wave equation in even dimensions. SIAM J. Appl. Math. 68(2), 392–412 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Finch, D., Patch, S., Rakesh: Determining a function from its mean values over a family of spheres. SIAM J. Math. Anal. 35(5), 1213–1240 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  37. Finch, D., Rakesh: Range of the spherical mean value operator for functions supported in a ball. Inverse Probl. 22, 923–938 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  38. Finch, D., Rakesh: Recovering a function from its spherical mean values in two and three dimensions. In: Wang, L. (ed.) Photoacoustic Imaging and Spectroscopy, pp. 77–88. CRC, Boca Raton (2009)

    Google Scholar 

  39. Finch, D., Rakesh: The spherical mean value operator with centers on a sphere. Inverse Probl. 23(6), S37–S50 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  40. Gebauer, B., Scherzer, O.: Impedance-acoustic tomography. SIAM J. Appl. Math. 69(2), 565–576 (2009)

    Article  MathSciNet  Google Scholar 

  41. Gelfand, I., Gindikin, S., Graev, M.: Selected Topics in Integral Geometry. Translations of Mathematical Monographs, vol. 220. American Mathematical Society, Providence (2003)

    Google Scholar 

  42. Grün, H., Haltmeier, M., Paltauf, G., Burgholzer, P.: Photoacoustic tomography using a fiber based Fabry-Perot interferometer as an integrating line detector and image reconstruction by model-based time reversal method. Proc. SPIE 6631, 663107 (2007)

    Google Scholar 

  43. Haltmeier, M., Burgholzer, P., Paltauf, G., Scherzer, O.: Thermoacoustic computed tomography with large planar receivers. Inverse Probl. 20, 1663–1673 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  44. Haltmeier, M., Scherzer, O., Burgholzer, P., Nuster, R., Paltauf, G.: Thermoacoustic tomography and the circular Radon transform: exact inversion formula. Math. Models Methods Appl. Sci. 17(4), 635–655 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  45. Helgason, S.: The Radon Transform. Birkhäuser, Basel (1980)

    Book  MATH  Google Scholar 

  46. Hörmander, L.: The Analysis of Linear Partial Differential Operators, vols. 1 and 2. Springer, New York (1983)

    Google Scholar 

  47. Hristova, Y.: Time reversal in thermoacoustic tomography: error estimate. Inverse Probl. 25, 1–14 (2009)

    Article  MathSciNet  Google Scholar 

  48. Hristova, Y., Kuchment, P., Nguyen, L.: On reconstruction and time reversal in thermoacoustic tomography in homogeneous and non-homogeneous acoustic media. Inverse Probl. 24, 055006 (2008)

    Article  MathSciNet  Google Scholar 

  49. Isakov, V.: Inverse Problems for Partial Differential Equations, 2nd edn. Springer, Berlin (2005)

    Google Scholar 

  50. Jin, X., Wang, L.V.: Thermoacoustic tomography with correction for acoustic speed variations. Phys. Med. Biol. 51, 6437–6448 (2006)

    Article  Google Scholar 

  51. John, F.: Plane Waves and Spherical Means Applied to Partial Differential Equations. Dover, New York (1971)

    Google Scholar 

  52. Kowar, R., Scherzer, O., Bonnefond, X.: Causality analysis of frequency dependent wave attenuation. Preprint arXiv:0906.4678

    Google Scholar 

  53. Kruger, R.A., Liu, P., Fang, Y.R., Appledorn, C.R.: Photoacoustic ultrasound (PAUS)reconstruction tomography. Med. Phys. 22, 1605–1609 (1995)

    Article  Google Scholar 

  54. Kuchment, P., Kunyansky, L.: Mathematics of thermoacoustic tomography. Eur. J. Appl. Math. 19(02), 191–224 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  55. Kuchment, P., Kunyansky, L.: Synthetic focusing in ultrasound modulated tomography. Inverse Probl. Imaging (to appear)

    Google Scholar 

  56. Kuchment, P., Lancaster, K., Mogilevskaya, L.: On local tomography. Inverse Probl. 11, 571–589 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  57. Kunyansky, L.: Explicit inversion formulae for the spherical mean Radon transform. Inverse probl. 23, 737–783 (2007)

    Article  Google Scholar 

  58. Kunyansky, L.: A series solution and a fast algorithm for the inversion of the spherical mean Radon transform. Inverse Probl. 23, S11–S20 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  59. Kunyansky, L.: Thermoacoustic tomography with detectors on an open curve: an efficient reconstruction algorithm. Inverse Probl. 24(5), 055021 (2008)

    Article  MathSciNet  Google Scholar 

  60. Lin, V., Pinkus, A.: Approximation of multivariate functions. In: Dikshit, H.P., Micchelli, C.A. (eds.) Advances in Computational Mathematics, pp. 1–9. World Scientific, Singapore (1994)

    Google Scholar 

  61. Louis, A.K., Quinto, E.T.: Local tomographic methods in Sonar. In: Surveys on Solution Methods for Inverse Problems, pp. 147–154. Springer, Vienna (2000)

    Google Scholar 

  62. Maslov, K., Zhang, H.F., Wang, L.V.: Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo. Inverse Probl. 23, S113–S122 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  63. Natterer, F.: The Mathematics of Computerized Tomography. Wiley, New York (1986)

    MATH  Google Scholar 

  64. Nguyen, L.: A family of inversion formulas in thermoacoustic tomography. Inverse Probl. Imaging 3(4), 649–675 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  65. Nguyen, L.V.: On singularities and instability of reconstruction in thermoacoustic tomography. Preprint arXiv:0911.5521v1

    Google Scholar 

  66. Norton, S.J.: Reconstruction of a two-dimensional reflecting medium over a circular domain: exact solution. J. Acoust. Soc. Am. 67, 1266–1273 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  67. Norton, S.J., Linzer, M.: Ultrasonic reflectivity imaging in three dimensions: exact inverse scattering solutions for plane, cylindrical, and spherical apertures. IEEE Trans. Biomed. Eng. 28, 200–202 (1981)

    Google Scholar 

  68. Olafsson, G., Quinto, E.T. (eds.): The Radon Transform, Inverse Problems, and Tomography. American Mathematical Society Short Course, Atlanta, 3–4 Jan 2005. Proceedings of Symposia in Applied Mathematics, vol. 63. American Mathematical Society, Providence (2006)

    Google Scholar 

  69. Oraevsky, A.A., Jacques, S.L., Esenaliev, R.O., Tittel, F.K.: Laser-based photoacoustic imaging in biological tissues. Proc. SPIE 2134A, 122–128 (1994)

    Google Scholar 

  70. Palamodov, V.P.: Reconstructive Integral Geometry. Birkhäuser, Basel (2004)

    Book  MATH  Google Scholar 

  71. Palamodov, V.: Remarks on the general Funk–Radon transform and thermoacoustic tomography (2007). Preprint arxiv: math.AP/0701204

    Google Scholar 

  72. Paltauf, G., Nuster, R., Burgholzer, P.: Weight factors for limited angle photoacoustic tomography. Phys. Med. Biol. 54, 3303–3314 (2009)

    Article  Google Scholar 

  73. Paltauf, G., Nuster, R., Haltmeier, M., Burgholzer, P.: Thermoacoustic computed tomography using a Mach–Zehnder interferometer as acoustic line detector. Appl. Opt. 46(16), 3352–3358 (2007)

    Article  Google Scholar 

  74. Paltauf, G., Nuster, R., Haltmeier, M., Burgholzer, P.: Experimental evaluation of reconstruction algorithms for limited view photoacoustic tomography with line detectors. Inverse Probl. 23, S81–S94 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  75. Paltauf, G., Nuster, R., Burgholzer, P.: Characterization of integrating ultrasound detectors for photoacoustic tomography. J. Appl. Phys. 105, 102026 (2009)

    Article  Google Scholar 

  76. Paltauf, G., Viator, J.A., Prahl, S.A., Jacques, S.L.: Iterative reconstruction algorithm for optoacoustic imaging J. Acoust. Soc. Am. 112(4), 1536–1544 (2002)

    Article  Google Scholar 

  77. Passechnik, V.I., Anosov, A.A., Bograchev, K.M.: Fundamentals and prospects of passive thermoacoustic tomography. Crit. Rev. Biomed. Eng. 28(3–4), 603–640 (2000)

    Article  Google Scholar 

  78. Patch, S.K.: Thermoacoustic tomography – consistency conditions and the partial scan problem. Phys. Med. Biol. 49, 1–11 (2004)

    Article  Google Scholar 

  79. Patch, S.: (2009) Photoacoustic or thermoacoustic tomography: consistency conditions and the partial scan problem. In: Wang, L. (ed.) Photoacoustic Imaging and Spectroscopy, pp. 103–116. CRC, Boca Raton (2009)

    Chapter  Google Scholar 

  80. Patch, S.K., Haltmeier, M.: Thermoacoustic tomography – ultrasound attenuation artifacts. IEEE Nucl. Sci. Symb. Conf. 4, 2604–2606 (2006)

    Google Scholar 

  81. Popov, D.A., Sushko, D.V.: A parametrix for the problem of optical-acoustic tomography. Dokl. Math. 65(1), 19–21 (2002)

    MATH  Google Scholar 

  82. Popov, D.A., Sushko, D.V.: Image restoration in optical-acoustic tomography. Probl. Inf. Transm. 40(3), 254–278 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  83. La Rivière, P.J., Zhang, J., Anastasio, M.A.: Image reconstruction in optoacoustic tomography for dispersive acoustic media. Opt. Lett. 31(6), 781–783 (2006)

    Article  Google Scholar 

  84. Shubin, M.A.: Pseudodifferential Operators and Spectral Theory. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  85. Stefanov, P., Uhlmann, G.: Integral geometry of tensor fields on a class of non-simple Riemannian manifolds. Am. J. Math. 130(1), 239–268 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  86. Stefanov, P., Uhlmann, G.: Thermoacoustic tomography with variable sound speed. Inverse Probl. 25, 075011 (2009)

    Article  MathSciNet  Google Scholar 

  87. Steinhauer, D.: A uniqueness theorem for thermoacoustic tomography in the case of limited boundary data. Preprint arXiv:0902.2838

    Google Scholar 

  88. Tam, A.C.: Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 58(2), 381–431 (1986)

    Article  Google Scholar 

  89. Tuchin, V.V. (ed.): Handbook of Optical Biomedical Diagnostics. SPIE, Bellingham (2002)

    Google Scholar 

  90. Vainberg, B.: The short-wave asymptotic behavior of the solutions of stationary problems, and the asymptotic behavior as t → of the solutions of nonstationary problems. Russ. Math. Surv. 30(2), 1–58 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  91. Vainberg, B.: Asymptotics Methods in the Equations of Mathematical Physics. Gordon & Breach, New York (1982)

    Google Scholar 

  92. Vo-Dinh, T. (ed.): Biomedical Photonics Handbook. CRC, Boca Raton (2003)

    Google Scholar 

  93. Wang, L. (ed.): Photoacoustic Imaging and Spectroscopy. CRC, Boca Raton (2009)

    Google Scholar 

  94. Wang, K., Anastasio, M.A.: Photoacoustic and thermoacoustic tomography: image formation principles. In: Scherzer, O. (ed.) Handbook of Mathematical Methods in Imaging, Chapter 18, pp. 781–815. Springer, New York (2011)

    Chapter  Google Scholar 

  95. Wang, L.V., Wu, H.: Biomedical Optics. Principles and Imaging. Wiley, New York (2007)

    Google Scholar 

  96. Xu, Y., Feng, D., Wang, L.-H.V.: Exact frequency-domain reconstruction for thermoacoustic tomography: I planar geometry. IEEE Trans. Med. Imaging 21, 823–828 (2002)

    Article  Google Scholar 

  97. Xu, M., Wang, L.-H.V.: Time-domain reconstruction for thermoacoustic tomography in a spherical geometry. IEEE Trans. Med. Imaging 21, 814–822 (2002)

    Article  Google Scholar 

  98. Xu, M., Wang, L.-H.V.: Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E 71, 016706 (2005)

    Article  Google Scholar 

  99. Xu, Y., Wang, L., Ambartsoumian, G., Kuchment, P.: Reconstructions in limited view thermoacoustic tomography. Med. Phys. 31(4), 724–733 (2004)

    Article  Google Scholar 

  100. Xu, Y., Wang, L., Ambartsoumian, G., Kuchment, P.: Limited view thermoacoustic tomography, Ch. 6. In: Wang, L.H. (ed.) Photoacoustic Imaging and Spectroscopy, pp. 61–73. CRC, Boca Raton (2009)

    Google Scholar 

  101. Xu, Y., Xu, M., Wang, L.-H.V.: Exact frequency-domain reconstruction for thermoacoustic tomography: II cylindrical geometry. IEEE Trans. Med. Imaging 21, 829–833 (2002)

    Article  Google Scholar 

  102. Yuan, Z., Zhang, Q., Jiang, H.: Simultaneous reconstruction of acoustic and optical properties of heterogeneous media by quantitative photoacoustic tomography. Opt. Express 14(15), 6749 (2006)

    Article  Google Scholar 

  103. Zangerl, G., Scherzer, O., Haltmeier, M.: Circular integrating detectors in photo and thermoacoustic tomography. Inverse Probl. Sci. Eng. 17(1), 133–142 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  104. Zhang, J., Anastasio, M.A.: Reconstruction of speed-of-sound and electromagnetic absorption distributions in photoacoustic tomography. Proc. SPIE 6086, 608619 (2006)

    Google Scholar 

Download references

Acknowledgements

The work of both authors was partially supported by the NSF DMS grant 0908208. The first author was also supported by the NSF DMS grant 0604778 and by the KAUST grant KUS-CI-016-04 through the IAMCS. The work of the second author was partially supported by the DOE grant DE-FG02-03ER25577. The authors express their gratitude to NSF, DOE, KAUST, and IAMCS for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kuchment .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Kuchment, P., Kunyansky, L. (2015). Mathematics of Photoacoustic and Thermoacoustic Tomography. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0790-8_51

Download citation

Publish with us

Policies and ethics