Skip to main content

Nonrigid Object Segmentation: Application to Four-Chamber Heart Segmentation

  • Chapter
  • First Online:
Marginal Space Learning for Medical Image Analysis
  • 1038 Accesses

Abstract

In this chapter, we present an automatic object detection and segmentation framework based on Marginal Space Learning (MSL), which integrates the components described in previous chapters into a complete segmentation system. In addition, simple and efficient methods based on mesh resampling are developed to establish mesh point correspondence, required to train a mean shape for shape initialization and build a statistical shape model for object boundary delineation. We use the four-chamber heart segmentation in cardiac Computed Tomography (CT) data as an example to illustrate the segmentation framework. Most of the technologies developed for heart chamber segmentation are generic, therefore can be applied directly or adapted easily to segment other anatomies in different imaging modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andreopoulos, A., Tsotsos, J.K.: Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Medical Image Analysis 12(3), 335–357 (2008)

    Article  Google Scholar 

  2. van Assen, H.C., Danilouchkine, M.G., Frangi, A.F., Ordas, S., Westernberg, J.J.M., Reiber, J.H.C., Lelieveldt, B.P.F.: SPASM: A 3D-ASM for segmentation of sparse and arbitrarily oriented cardiac MRI data. Medical Image Analysis 10(2), 286–303 (2006)

    Article  Google Scholar 

  3. Bao, Z., Zhukov, L., Guskov, I., Wood, J., Breen, D.: Dynamic deformable models for 3D MRI heart segmentation. In: Proc. of SPIE Medical Imaging, pp. 398–405 (2002)

    Google Scholar 

  4. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Machine Intell. 24(4), 509–522 (2002)

    Article  Google Scholar 

  5. von Berg, J., Lorenz, C.: Multi-surface cardiac modelling, segmentation, and tracking. In: Proc. Functional Imaging and Modeling of the Heart, pp. 1–11 (2005)

    Google Scholar 

  6. Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of deformation. IEEE Trans. Pattern Anal. Machine Intell. 11(6), 567–585 (1989)

    Article  MATH  Google Scholar 

  7. Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Computer Vision and Image Understanding 89(2–3), 114–141 (2003)

    Article  MATH  Google Scholar 

  8. Cohen, L.D.: On active contour models and balloons. CVGIP: Image Understanding 53(2), 211–218 (1991)

    Article  MATH  Google Scholar 

  9. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models—their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)

    Article  Google Scholar 

  10. Corsi, C., Saracino, G., Sarti, A., Lamberti, C.: Left ventricular volume estimation for real-time three-dimensional echocardiography. IEEE Trans. Medical Imaging 21(9), 1202–1208 (2002)

    Article  Google Scholar 

  11. Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.J.: A minimum description length approach to statistical shape modeling. IEEE Trans. Medical Imaging 21(5), 525–537 (2002)

    Article  Google Scholar 

  12. Dollár, P., Tu, Z., Belongie, S.: Supervised learning of edges and object boundaries. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 1964–1971 (2006)

    Google Scholar 

  13. Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. John Wiley, Chichester (1998)

    MATH  Google Scholar 

  14. Ecabert, O., Peters, J., Weese, J.: Modeling shape variability for full heart segmentation in cardiac computed-tomography images. In: Proc. of SPIE Medical Imaging, pp. 1199–1210 (2006)

    Google Scholar 

  15. Frangi, A.F., Niessen, W.J., Viergever, M.A.: Three-dimensional modeling for functional analysis of cardiac images: A review. IEEE Trans. Medical Imaging 20(1), 2–25 (2001)

    Article  Google Scholar 

  16. Frangi, A.F., Rueckert, D., Schnabel, J.A., Niessen, W.J.: Automatic construction of multiple-object three-dimensional statistical shape models: Application to cardiac modeling. IEEE Trans. Medical Imaging 21(9), 1151–1166 (2002)

    Article  Google Scholar 

  17. Fritz, D., Krolla, J., Dillmann, R., Scheuring, M.: Automatic 4D-segmentation of the left ventricle in cardiac-CT-data. In: Proc. of SPIE Medical Imaging, pp. 1–11 (2007)

    Google Scholar 

  18. Fritz, D., Rinck, D., Dillmann, R., Scheuring, M.: Segmentation of the left and right cardiac ventricle using a combined bi-temporal statistical model. In: Proc. of SPIE Medical Imaging, pp. 605–614 (2006)

    Google Scholar 

  19. Fritz, D., Rinck, D., Unterhinninghofen, R., Dillmann, R., Scheuring, M.: Automatic segmentation of the left ventricle and computation of diagnostic parameters using regiongrowing and a statistical model. In: Proc. of SPIE Medical Imaging, pp. 1844–1854 (2005)

    Google Scholar 

  20. Gerard, O., Billon, A.C., Rouet, J.M., Jacob, M., Fradkin, M., Allouche, C.: Efficient model-based quantification of left ventricular function in 3-D echocardiography. IEEE Trans. Medical Imaging 21(9), 1059–1068 (2002)

    Article  Google Scholar 

  21. van Ginneken, B., Frangi, A.F., Staal, J.J., ter Haar Romeny, B.M., Viergever, M.A.: Active shape model segmentation with optimal features. IEEE Trans. Medical Imaging 21(8), 924–933 (2002)

    Article  Google Scholar 

  22. Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural networks architectures. Neural Computation 7(2), 219–269 (1995)

    Article  Google Scholar 

  23. Goldfarb, G., Idnani, A.: A numerically stable dual method for solving strictly convex quadratic programs. Mathematical Programming 27(1), 1–33 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hong, W., Georgescu, B., Zhou, X.S., Krishnan, S., Ma, Y., Comaniciu, D.: Database-guided simultaneous multi-slice 3D segmentation for volumetric data. In: Proc. European Conf. Computer Vision, pp. 397–409 (2006)

    Google Scholar 

  25. Jolly, M.P.: Automatic segmentation of the left ventricle in cardiac MR and CT images. Int. J. Computer Vision 70(2), 151–163 (2006)

    Article  Google Scholar 

  26. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Computer Vision 1(4), 321–331 (1988)

    Article  Google Scholar 

  27. Kelm, B.M., Wels, M., Zhou, S.K., Seifert, S., Suehling, M., Zheng, Y., Comaniciu, D.: Spine detection in CT and MR using iterated marginal space learning. Medical Image Analysis 17(8), 1283–1292 (2013)

    Article  Google Scholar 

  28. Kelm, B.M., Zhou, S.K., Suehling, M., Zheng, Y., Wels, M., Comaniciu, D.: Detection of 3D spinal geometry using iterated marginal space learning. In: Proc. MICCAI Workshop Medical Computer Vision — Recognition Techniques and Applications in Medical Imaging, pp. 96–105 (2010)

    Google Scholar 

  29. Li, K., Wu, X., Chen, D.Z., Sonka, M.: Optimal surface segmentation in volumetric images—A graph-theoretic approach. IEEE Trans. Pattern Anal. Machine Intell. 28(1), 119–134 (2006)

    Article  Google Scholar 

  30. Ling, H., Zhou, S.K., Zheng, Y., Georgescu, B., Suehling, M., Comaniciu, D.: Hierarchical, learning-based automatic liver segmentation. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  31. Lorenz, C., von Berg, J.: A comprehensive shape model of the heart. Medical Image Analysis 10(4), 657–670 (2006)

    Article  Google Scholar 

  32. Lorenz, C., Krahnstover, N.: Generation of point based 3D statistical shape models for anatomical objects. Computer Vision and Image Understanding 77(2), 175–191 (2000)

    Article  Google Scholar 

  33. Lötjönen, J., Kivistö, S., Koikkalainen, J., Smutek, D., Lauerma, K.: Statistical shape model of atria, ventricles and epicardium from short- and long-axis MR images. Medical Image Analysis 8(3), 371–386 (2004)

    Article  Google Scholar 

  34. Lu, X., Georgescu, B., Zheng, Y., Otsuki, J., Bennett, R., Comaniciu, D.: AutoMPR: Automatic detection of standard planes from three dimensional echocardiographic data. In: Proc. IEEE Int’l Sym. Biomedical Imaging, pp. 1279–1282 (2008)

    Google Scholar 

  35. Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using local brightness, color and texture cues. IEEE Trans. Pattern Anal. Machine Intell. 26(5), 530–549 (2004)

    Article  Google Scholar 

  36. McInerney, T., Terzopoulos, D.: A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis. Computerized Medical Imaging and Graphics 19(1), 69–83 (1995)

    Article  Google Scholar 

  37. Mitchell, S.C., Bosch, J.G., Lelieveldt, B.P.F., van Geest, R.J., Reiber, J.H.C., Sonka, M.: 3-D active appearance models: Segmentation of cardiac MR and ultrasound images. IEEE Trans. Medical Imaging 21(9), 1167–1178 (2002)

    Article  Google Scholar 

  38. Moré, J.J., Toraldo, G.: On the solutions of large quadratic programming problems with bound constraints. SIAM J. Optimization 1(1), 93–113 (1991)

    Article  MATH  Google Scholar 

  39. Neubauer, A., Wegenkiltl, R.: Analysis of four-dimensional cardiac data sets using skeleton-based segmentation. In: Proc. Int’l Conf. in Central Europe on Computer Graphics and Visualization, pp. 330–337 (2003)

    Google Scholar 

  40. Park, K., Montillo, A., Metaxas, D., Axel, L.: Volumetric heart modeling and analysis. Communications of the ACM 48(2), 43–48 (2005)

    Article  Google Scholar 

  41. Schwing, A., Zheng, Y.: Reliable extraction of the mid-sagittal plane in 3D brain MRI via hierarchical landmark detection. In: Proc. IEEE Int’l Sym. Biomedical Imaging, pp. 1–4 (2014)

    Google Scholar 

  42. Seifert, S., Barbu, A., Zhou, K., Liu, D., Feulner, J., Huber, M., Suehling, M., Cavallaro, A., Comaniciu, D.: Hierarchical parsing and semantic navigation of full body CT data. In: Proc. of SPIE Medical Imaging, pp. 1–8 (2009)

    Google Scholar 

  43. Taubin, G.: Curve and surface smoothing without shrinkage. In: Proc. Int’l Conf. Computer Vision, pp. 852–857 (1995)

    Google Scholar 

  44. Taubin, G.: Optimal surface smoothing as filter design. In: Proc. European Conf. Computer Vision, pp. 283–292 (1996)

    Google Scholar 

  45. Tu, Z.: Probabilistic boosting-tree: Learning discriminative methods for classification, recognition, and clustering. In: Proc. Int’l Conf. Computer Vision, pp. 1589–1596 (2005)

    Google Scholar 

  46. Wahba, G.: Spline Models for Observational Data. Soc. Industrial and Applied Math. (1990)

    Google Scholar 

  47. Wels, M., Zheng, Y., Carneiro, G., Huber, M., Hornegger, J., Comaniciu, D.: Fast and robust 3-D MRI brain structure segmentation. In: Proc. Int’l Conf. Medical Image Computing and Computer Assisted Intervention, vol. 2, pp. 575–583 (2009)

    Google Scholar 

  48. Yang, L., Georgescu, B., Zheng, Y., Foran, D.J., Comaniciu, D.: A fast and accurate tracking algorithm of left ventricles in 3D echocardiography. In: Proc. IEEE Int’l Sym. Biomedical Imaging, pp. 221–224 (2008)

    Google Scholar 

  49. Yang, L., Georgescu, B., Zheng, Y., Meer, P., Comaniciu, D.: 3D ultrasound tracking of the left ventricles using one-step forward prediction and data fusion of collaborative trackers. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  50. Yang, L., Georgescu, B., Zheng, Y., Wang, Y., Meer, P., Comaniciu, D.: Prediction based collaborative trackers (PCT): A robust and accurate approach toward 3D medical object tracking. IEEE Trans. Medical Imaging 30(11), 1921–1932 (2011)

    Article  Google Scholar 

  51. Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Fast automatic heart chamber segmentation from 3D CT data using marginal space learning and steerable features. In: Proc. Int’l Conf. Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  52. Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans. Medical Imaging 27(11), 1668–1681 (2008)

    Article  Google Scholar 

  53. Zheng, Y., Georgescu, B., Comaniciu, D.: Marginal space learning for efficient detection of 2D/3D anatomical structures in medical images. In: Proc. Information Processing in Medical Imaging, pp. 411–422 (2009)

    Google Scholar 

  54. Zheng, Y., Georgescu, B., Ling, H., Zhou, S.K., Scheuering, M., Comaniciu, D.: Constrained marginal space learning for efficient 3D anatomical structure detection in medical images. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 194–201 (2009)

    Google Scholar 

  55. Zheng, Y., Georgescu, B., Vega-Higuera, F., Zhou, S.K., Comaniciu, D.: Fast and automatic heart isolation in 3D CT volumes: Optimal shape initialization. In: Proc. MICCAI Workshop Machine Learning in Medical Imaging, pp. 84–91 (2010)

    Google Scholar 

  56. Zheng, Y., John, M., Liao, R., Nottling, A., Boese, J., Kempfert, J., Walther, T., Brockmann, G., Comaniciu, D.: Automatic aorta segmentation and valve landmark detection in C-arm CT for transcatheter aortic valve implantation. IEEE Trans. Medical Imaging 31(12), 2307–2321 (2012)

    Article  Google Scholar 

  57. Zheng, Y., Lu, X., Georgescu, B., Littmann, A., Mueller, E., Comaniciu, D.: Robust object detection using marginal space learning and ranking-based multi-detector aggregation: Application to automatic left ventricle detection in 2D MRI images. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 1343–1350 (2009)

    Google Scholar 

  58. Zheng, Y., Wang, T., John, M., Zhou, S.K., Boese, J., Comaniciu, D.: Multi-part left atrium modeling and segmentation in C-arm CT volumes for atrial fibrillation ablation. In: Proc. Int’l Conf. Medical Image Computing and Computer Assisted Intervention, vol. 3, pp. 487–495 (2011)

    Google Scholar 

  59. Zheng, Y., Yang, D., John, M., Comaniciu, D.: Multi-part modeling and segmentation of left atrium in C-arm CT for image-guided ablation of atrial fibrillation. IEEE Trans. Medical Imaging (2014). In Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zheng, Y., Comaniciu, D. (2014). Nonrigid Object Segmentation: Application to Four-Chamber Heart Segmentation. In: Marginal Space Learning for Medical Image Analysis. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0600-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0600-0_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0599-7

  • Online ISBN: 978-1-4939-0600-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics