Skip to main content

CVD in CKD: Focus on the Dyslipidemia Problem

  • Chapter
  • First Online:
Dyslipidemias in Kidney Disease

Abstract

Increased cardiovascular morbidity and mortality have been extensively documented in patients with chronic kidney disease (CKD). Notably, cardiovascular risk gradually increases with increasing stages of CKD, being the highest among patients with end-stage renal disease. Although the role of hyperlipidemia in the development of cardiovascular disease (CVD) in the general population has been efficiently documented, this relationship has been difficult to establish in patients with CKD. Indeed, non-traditional cardiovascular risk factors (inflammation, increased oxidative stress, vascular calcification, endothelial dysfunction, and anemia) confound the association of dyslipidemia and CVD in the CKD setting. Moreover, lipoprotein abnormalities in CKD substantially differ from those in the general population, with hypertriglyceridemia being the primary characteristic, whereas total and low-density lipoprotein cholesterol are normal or low. To further complicate things, pathologic findings of arterial lesions in CKD consist of calcium-rich atherosclerotic plaques, whereas in classic atherosclerotic disease lipid-laden atheromatous or fibroatheromatous plaques are detected, implying a different pathogenetic mechanism of CKD atherosclerotic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298(17):2038–47. PubMed PMID: 17986697.

    Article  PubMed  CAS  Google Scholar 

  2. Foley RN, Collins AJ. End-stage renal disease in the United States: an update from the United States Renal Data System. J Am Soc Nephrol. 2007;18(10):2644–8. PubMed PMID: 17656472.

    Article  PubMed  Google Scholar 

  3. Leoncini G, Viazzi F, Pontremoli R. Overall health assessment: a renal perspective. Lancet. 2010;375(9731):2053–4. PubMed PMID: 20483450. Epub 2010/05/21.eng.

    Article  PubMed  Google Scholar 

  4. van der Velde M, Matsushita K, Coresh J, Astor BC, Woodward M, Levey A, et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int. 2011;79(12):1341–52. PubMed PMID: 21307840. Epub 2011/02/11.eng.

    Article  PubMed  CAS  Google Scholar 

  5. Levey AS, de Jong PE, Coresh J, El Nahas M, Astor BC, Matsushita K, et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int. 2011;80(1):17–28. PubMed PMID: 21150873. Epub 2010/12/15.eng.

    Article  PubMed  Google Scholar 

  6. Sarnak MJ, Levey AS, Schoolwerth AC, Coresh J, Culleton B, Hamm LL, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Hypertension. 2003;42(5):1050–65. PubMed PMID: 14604997.

    Article  PubMed  CAS  Google Scholar 

  7. Manjunath G, Tighiouart H, Coresh J, Macleod B, Salem DN, Griffith JL, et al. Level of kidney function as a risk factor for cardiovascular outcomes in the elderly. Kidney Int. 2003;63(3):1121–9. PubMed PMID: 12631096.

    Article  PubMed  Google Scholar 

  8. Cheung AK, Sarnak MJ, Yan G, Berkoben M, Heyka R, Kaufman A, et al. Cardiac diseases in maintenance hemodialysis patients: results of the HEMO Study. Kidney Int. 2004;65(6):2380–9. PubMed PMID: 15149351. Epub 2004/05/20.eng.

    Article  PubMed  Google Scholar 

  9. United States Renal Data System. Excerpts from USRDS 2009 Annual Data Report. U.S. Department of Health and Human Services. The National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases. Am J Kidney Dis. 2010;55(Suppl 1):S1.

    Google Scholar 

  10. Law MR, Wald NJ, Thompson SG. By how much and how quickly does reduction in serum cholesterol concentration lower risk of ischaemic heart disease? BMJ. 1994;308(6925):367–72. PubMed PMID: 8043072.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Liu Y, Coresh J, Eustace JA, Longenecker JC, Jaar B, Fink NE, et al. Association between cholesterol level and mortality in dialysis patients: role of inflammation and malnutrition. JAMA. 2004;291(4):451–9. PubMed PMID: 14747502.

    Article  PubMed  CAS  Google Scholar 

  12. Stevens LA, Padala S, Levey AS. Advances in glomerular filtration rate-estimating equations. Curr Opin Nephrol Hypertens. 2010;19(3):298–307. PubMed PMID: 20393287. Epub 2010/04/16.eng.

    Article  PubMed  PubMed Central  Google Scholar 

  13. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2 Suppl 1):S1–266. PubMed PMID: 11904577. Epub 2002/03/21.eng.

    Google Scholar 

  14. Levey AS, Eckardt KU, Tsukamoto Y, Levin A, Coresh J, Rossert J, et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2005;67(6):2089–100. PubMed PMID: 15882252. Epub 2005/05/11.eng.

    Article  PubMed  Google Scholar 

  15. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:1–150.

    Google Scholar 

  16. Tonelli M, Wiebe N, Culleton B, House A, Rabbat C, Fok M, et al. Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol. 2006;17(7):2034–47. PubMed PMID: 16738019.

    Article  PubMed  Google Scholar 

  17. Muntner P, He J, Hamm L, Loria C, Whelton PK. Renal insufficiency and subsequent death resulting from cardiovascular disease in the United States. J Am Soc Nephrol. 2002;13(3):745–53. PubMed PMID: 11856780. Epub 2002/02/22.eng.

    PubMed  Google Scholar 

  18. Sarnak MJ, Levey AS, Schoolwerth AC, Coresh J, Culleton B, Hamm LL, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation. 2003;108(17):2154–69. PubMed PMID: 14581387. Epub 2003/10/29.eng.

    Article  PubMed  Google Scholar 

  19. Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010;375(9731):2073–81. PubMed PMID: 20483451. Epub 2010/05/21.eng.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tonelli M, Muntner P, Lloyd A, Manns BJ, James MT, Klarenbach S, et al. Using proteinuria and estimated glomerular filtration rate to classify risk in patients with chronic kidney disease: a cohort study. Ann Intern Med. 2011;154(1):12–21. PubMed PMID: 21200034. Epub 2011/01/05.eng.

    Article  PubMed  Google Scholar 

  21. Weiner DE, Tighiouart H, Amin MG, Stark PC, MacLeod B, Griffith JL, et al. Chronic kidney disease as a risk factor for cardiovascular disease and all-cause mortality: a pooled analysis of community-based studies. J Am Soc Nephrol. 2004;15(5):1307–15. PubMed PMID: 15100371. Epub 2004/04/22.eng.

    Article  PubMed  Google Scholar 

  22. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296–305. PubMed PMID: 15385656. Epub 2004/09/24.eng.

    Article  PubMed  CAS  Google Scholar 

  23. Rahman M, Pressel S, Davis BR, Nwachuku C, Wright Jr JT, Whelton PK, et al. Cardiovascular outcomes in high-risk hypertensive patients stratified by baseline glomerular filtration rate. Ann Intern Med. 2006;144(3):172–80. PubMed PMID: 16461961. Epub 2006/02/08.eng.

    Article  PubMed  Google Scholar 

  24. Perkovic V, Ninomiya T, Arima H, Gallagher M, Jardine M, Cass A, et al. Chronic kidney disease, cardiovascular events, and the effects of perindopril-based blood pressure lowering: data from the PROGRESS study. J Am Soc Nephrol. 2007;18(10):2766–72. PubMed PMID: 17804673. Epub 2007/09/07.eng.

    Article  PubMed  Google Scholar 

  25. Schneider CA, Ferrannini E, Defronzo R, Schernthaner G, Yates J, Erdmann E. Effect of pioglitazone on cardiovascular outcome in diabetes and chronic kidney disease. J Am Soc Nephrol. 2008;19(1):182–7. PubMed PMID: 18057215. Epub 2007/12/07.eng.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Segura J, Campo C, Gil P, Roldan C, Vigil L, Rodicio JL, et al. Development of chronic kidney disease and cardiovascular prognosis in essential hypertensive patients. J Am Soc Nephrol. 2004;15(6):1616–22. PubMed PMID: 15153573. Epub 2004/05/22.eng.

    Article  PubMed  Google Scholar 

  27. Knobler H, Zornitzki T, Vered S, Oettinger M, Levy R, Caspi A, et al. Reduced glomerular filtration rate in asymptomatic diabetic patients: predictor of increased risk for cardiac events independent of albuminuria. J Am Coll Cardiol. 2004;44(11):2142–8. PubMed PMID: 15582311. Epub 2004/12/08.eng.

    Article  PubMed  Google Scholar 

  28. Kong AP, So WY, Szeto CC, Chan NN, Luk A, Ma RC, et al. Assessment of glomerular filtration rate in addition to albuminuria is important in managing type II diabetes. Kidney Int. 2006;69(2):383–7. PubMed PMID: 16408130. Epub 2006/01/13.eng.

    Article  PubMed  CAS  Google Scholar 

  29. Mann JF, Gerstein HC, Pogue J, Bosch J, Yusuf S. Renal insufficiency as a predictor of cardiovascular outcomes and the impact of ramipril: the HOPE randomized trial. Ann Intern Med. 2001;134(8):629–36. PubMed PMID: 11304102. Epub 2001/04/17.eng.

    Article  PubMed  CAS  Google Scholar 

  30. Anavekar NS, Gans DJ, Berl T, Rohde RD, Cooper W, Bhaumik A, et al. Predictors of cardiovascular events in patients with type 2 diabetic nephropathy and hypertension: a case for albuminuria. Kidney Int Suppl. 2004;92:S50–5. PubMed PMID: 15485418.Epub 2004/10/16.eng.

    Article  PubMed  Google Scholar 

  31. Mann JF, Yi QL, Gerstein HC. Albuminuria as a predictor of cardiovascular and renal outcomes in people with known atherosclerotic cardiovascular disease. Kidney Int Suppl. 2004;92:S59–62. PubMed PMID: 15485420. Epub 2004/10/16.eng.

    Article  PubMed  Google Scholar 

  32. Weiner DE, Tighiouart H, Elsayed EF, Griffith JL, Salem DN, Levey AS, et al. The Framingham predictive instrument in chronic kidney disease. J Am Coll Cardiol. 2007;50(3):217–24. PubMed PMID: 17631213. Epub 2007/07/17.eng.

    Article  PubMed  Google Scholar 

  33. Muntner P, He J, Astor BC, Folsom AR, Coresh J. Traditional and nontraditional risk factors predict coronary heart disease in chronic kidney disease: results from the atherosclerosis risk in communities study. J Am Soc Nephrol. 2005;16(2):529–38. PubMed PMID: 15625072. Epub 2004/12/31.eng.

    Article  PubMed  Google Scholar 

  34. Shlipak MG, Fried LF, Cushman M, Manolio TA, Peterson D, Stehman-Breen C, et al. Cardiovascular mortality risk in chronic kidney disease: comparison of traditional and novel risk factors. JAMA. 2005;293(14):1737–45. PubMed PMID: 15827312. Epub 2005/04/14.eng.

    Article  PubMed  CAS  Google Scholar 

  35. Kobayashi S, Maesato K, Moriya H, Ohtake T, Ikeda T. Insulin resistance in patients with chronic kidney disease. Am J Kidney Dis. 2005;45(2):275–80. PubMed PMID: 15685504. Epub 2005/02/03.eng.

    Article  PubMed  CAS  Google Scholar 

  36. Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med. 1996;335(14):1001–9. PubMed PMID: 8801446.

    Article  PubMed  CAS  Google Scholar 

  37. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360(9326):7–22. PubMed PMID: 12114036.

    Article  Google Scholar 

  38. Sever PS, Dahlof B, Poulter NR, Wedel H, Beevers G, Caulfield M, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial-Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Drugs. 2004;64 Suppl 2:43–60. PubMed PMID: 15765890.

    Article  PubMed  Google Scholar 

  39. Rossouw JE, Lewis B, Rifkind BM. The value of lowering cholesterol after myocardial infarction. N Engl J Med. 1990;323(16):1112–9. PubMed PMID: 2215579.

    Article  PubMed  CAS  Google Scholar 

  40. Kilpatrick RD, McAllister CJ, Kovesdy CP, Derose SF, Kopple JD, Kalantar-Zadeh K. Association between serum lipids and survival in hemodialysis patients and impact of race. J Am Soc Nephrol. 2007;18(1):293–303. PubMed PMID: 17167113. Epub 2006/12/15.eng.

    Article  PubMed  CAS  Google Scholar 

  41. Iseki K, Yamazato M, Tozawa M, Takishita S. Hypocholesterolemia is a significant predictor of death in a cohort of chronic hemodialysis patients. Kidney Int. 2002;61(5):1887–93. PubMed PMID: 11967041. Epub 2002/04/23.eng.

    Article  PubMed  Google Scholar 

  42. Chawla V, Greene T, Beck GJ, Kusek JW, Collins AJ, Sarnak MJ, et al. Hyperlipidemia and long-term outcomes in nondiabetic chronic kidney disease. Clin J Am Soc Nephrol. 2010;5(9):1582–7. PubMed PMID: 20558558. Epub 2010/06/19.eng.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Kalantar-Zadeh K, Block G, Humphreys MH, Kopple JD. Reverse epidemiology of cardiovascular risk factors in maintenance dialysis patients. Kidney Int. 2003;63(3):793–808. PubMed PMID: 12631061. Epub 2003/03/13.eng.

    Article  PubMed  Google Scholar 

  44. Schiffrin EL, Lipman ML, Mann JF. Chronic kidney disease: effects on the cardiovascular system. Circulation. 2007;116(1):85–97. PubMed PMID: 17606856. Epub 2007/07/04.eng.

    Article  PubMed  Google Scholar 

  45. Kaysen GA, Eiserich JP. The role of oxidative stress-altered lipoprotein structure and function and microinflammation on cardiovascular risk in patients with minor renal dysfunction. J Am Soc Nephrol. 2004;15(3):538–48. PubMed PMID: 14978155. Epub 2004/02/24.eng.

    Article  PubMed  CAS  Google Scholar 

  46. Weiner DE, Tighiouart H, Elsayed EF, Griffith JL, Salem DN, Levey AS, et al. The relationship between nontraditional risk factors and outcomes in individuals with stage 3 to 4 CKD. Am J Kidney Dis. 2008;51(2):212–23. PubMed PMID: 18215699. Epub 2008/01/25.eng.

    Article  PubMed  CAS  Google Scholar 

  47. Parekh RS, Plantinga LC, Kao WH, Meoni LA, Jaar BG, Fink NE, et al. The association of sudden cardiac death with inflammation and other traditional risk factors. Kidney Int. 2008;74(10):1335–42. PubMed PMID: 18769368. Epub 2008/09/05.eng.

    Article  PubMed  CAS  Google Scholar 

  48. Kendrick J, Chonchol MB. Nontraditional risk factors for cardiovascular disease in patients with chronic kidney disease. Nat Clin Pract Nephrol. 2008;4(12):672–81. PubMed PMID: 18825155. Epub 2008/10/01.eng.

    Article  PubMed  Google Scholar 

  49. Canaud B, Cristol J, Morena M, Leray-Moragues H, Bosc J, Vaussenat F. Imbalance of oxidants and antioxidants in haemodialysis patients. Blood Purif. 1999;17(2–3):99–106. PubMed PMID: 10449867. Epub 1999/08/18.eng.

    Article  PubMed  CAS  Google Scholar 

  50. Small DM, Coombes JS, Bennett N, Johnson DW, Gobe GC. Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrology (Carlton). 2012;17(4):311–21. PubMed PMID: 22288610. Epub 2012/02/01.eng.

    Article  CAS  Google Scholar 

  51. Himmelfarb J, Stenvinkel P, Ikizler TA, Hakim RM. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 2002;62(5):1524–38. PubMed PMID: 12371953. Epub 2002/10/10.eng.

    Article  PubMed  CAS  Google Scholar 

  52. Vaziri ND, Dicus M, Ho ND, Boroujerdi-Rad L, Sindhu RK. Oxidative stress and dysregulation of superoxide dismutase and NADPH oxidase in renal insufficiency. Kidney Int. 2003;63(1):179–85. PubMed PMID: 12472781. Epub 2002/12/11.eng.

    Article  PubMed  CAS  Google Scholar 

  53. Touyz RM, Yao G, Quinn MT, Pagano PJ, Schiffrin EL. p47phox associates with the cytoskeleton through cortactin in human vascular smooth muscle cells: role in NAD(P)H oxidase regulation by angiotensin II. Arterioscler Thromb Vasc Biol. 2005;25(3):512–8. PubMed PMID: 15618548. Epub 2004/12/25.eng.

    Article  PubMed  CAS  Google Scholar 

  54. Daugherty A, Dunn JL, Rateri DL, Heinecke JW. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest. 1994;94(1):437–44. PubMed PMID: 8040285. Epub 1994/07/01.eng.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Tsimikas S, Brilakis ES, Miller ER, McConnell JP, Lennon RJ, Kornman KS, et al. Oxidized phospholipids, Lp(a) lipoprotein, and coronary artery disease. N Engl J Med. 2005;353(1):46–57. PubMed PMID: 16000355. Epub 2005/07/08.eng.

    Article  PubMed  CAS  Google Scholar 

  56. Maggi E, Bellazzi R, Falaschi F, Frattoni A, Perani G, Finardi G, et al. Enhanced LDL oxidation in uremic patients: an additional mechanism for accelerated atherosclerosis? Kidney Int. 1994;45(3):876–83. PubMed PMID: 8196291. Epub 1994/03/01.eng.

    Article  PubMed  CAS  Google Scholar 

  57. Rao M, Wong C, Kanetsky P, Girndt M, Stenvinkel P, Reilly M, et al. Cytokine gene polymorphism and progression of renal and cardiovascular diseases. Kidney Int. 2007;72(5):549–56. PubMed PMID: 17579660. Epub 2007/06/21.eng.

    Article  PubMed  CAS  Google Scholar 

  58. Jofre R, Rodriguez-Benitez P, Lopez-Gomez JM, Perez-Garcia R. Inflammatory syndrome in patients on hemodialysis. J Am Soc Nephrol. 2006;17(12 Suppl 3):S274–80. PubMed PMID: 17130274. Epub 2006/11/30.eng.

    Article  PubMed  CAS  Google Scholar 

  59. Vaziri ND, Oveisi F, Ding Y. Role of increased oxygen free radical activity in the pathogenesis of uremic hypertension. Kidney Int. 1998;53(6):1748–54. PubMed PMID: 9607208. Epub 1998/06/02.eng.

    Article  PubMed  CAS  Google Scholar 

  60. Menon V, Greene T, Wang X, Pereira AA, Marcovina SM, Beck GJ, et al. C-reactive protein and albumin as predictors of all-cause and cardiovascular mortality in chronic kidney disease. Kidney Int. 2005;68(2):766–72. PubMed PMID: 16014054. Epub 2005/07/15.eng.

    PubMed  CAS  Google Scholar 

  61. Honda H, Qureshi AR, Heimburger O, Barany P, Wang K, Pecoits-Filho R, et al. Serum albumin, C-reactive protein, interleukin 6, and fetuin a as predictors of malnutrition, cardiovascular disease, and mortality in patients with ESRD. Am J Kidney Dis. 2006;47(1):139–48. PubMed PMID: 16377395. Epub 2005/12/27.eng.

    Article  PubMed  CAS  Google Scholar 

  62. Endemann DH, Schiffrin EL. Endothelial dysfunction. J Am Soc Nephrol. 2004;15(8):1983–92. PubMed PMID: 15284284. Epub 2004/07/31.eng.

    Article  PubMed  CAS  Google Scholar 

  63. Stehouwer CD, Smulders YM. Microalbuminuria and risk for cardiovascular disease: analysis of potential mechanisms. J Am Soc Nephrol. 2006;17(8):2106–11. PubMed PMID: 16825333. Epub 2006/07/11.eng.

    Article  PubMed  CAS  Google Scholar 

  64. Wever R, Boer P, Hijmering M, Stroes E, Verhaar M, Kastelein J, et al. Nitric oxide production is reduced in patients with chronic renal failure. Arterioscler Thromb Vasc Biol. 1999;19(5):1168–72. PubMed PMID: 10323766. Epub 1999/05/14.eng.

    Article  PubMed  CAS  Google Scholar 

  65. Passauer J, Pistrosch F, Bussemaker E, Lassig G, Herbrig K, Gross P. Reduced agonist-induced endothelium-dependent vasodilation in uremia is attributable to an impairment of vascular nitric oxide. J Am Soc Nephrol. 2005;16(4):959–65. PubMed PMID: 15728785. Epub 2005/02/25.eng.

    Article  PubMed  CAS  Google Scholar 

  66. Zoccali C, Bode-Boger S, Mallamaci F, Benedetto F, Tripepi G, Malatino L, et al. Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: a prospective study. Lancet. 2001;358(9299):2113–7. PubMed PMID: 11784625. Epub 2002/01/11.eng.

    Article  PubMed  CAS  Google Scholar 

  67. Ravani P, Tripepi G, Malberti F, Testa S, Mallamaci F, Zoccali C. Asymmetrical dimethylarginine predicts progression to dialysis and death in patients with chronic kidney disease: a competing risks modeling approach. J Am Soc Nephrol. 2005;16(8):2449–55. PubMed PMID: 15944335. Epub 2005/06/10.eng.

    Article  PubMed  CAS  Google Scholar 

  68. Cooke JP. Asymmetrical dimethylarginine: the Uber marker? Circulation. 2004;109(15):1813–8. PubMed PMID: 15096461. Epub 2004/04/21.eng.

    Article  PubMed  Google Scholar 

  69. Antoniades C, Demosthenous M, Tousoulis D, Antonopoulos AS, Vlachopoulos C, Toutouza M, et al. Role of asymmetrical dimethylarginine in inflammation-induced endothelial dysfunction in human atherosclerosis. Hypertension. 2011;58(1):93–8. PubMed PMID: 21518967. Epub 2011/04/27.eng.

    Article  PubMed  CAS  Google Scholar 

  70. de Mutsert R, Grootendorst DC, Axelsson J, Boeschoten EW, Krediet RT, Dekker FW. Excess mortality due to interaction between protein-energy wasting, inflammation and cardiovascular disease in chronic dialysis patients. Nephrol Dial Transplant. 2008;23(9):2957–64. PubMed PMID: 18400817. Epub 2008/04/11.eng.

    Article  PubMed  CAS  Google Scholar 

  71. Friedman AN, Hunsicker LG, Selhub J, Bostom AG. C-reactive protein as a predictor of total arteriosclerotic outcomes in type 2 diabetic nephropathy. Kidney Int. 2005;68(2):773–8. PubMed PMID: 16014055. Epub 2005/07/15.eng.

    Article  PubMed  CAS  Google Scholar 

  72. Covic A, Kothawala P, Bernal M, Robbins S, Chalian A, Goldsmith D. Systematic review of the evidence underlying the association between mineral metabolism disturbances and risk of all-cause mortality, cardiovascular mortality and cardiovascular events in chronic kidney disease. Nephrol Dial Transplant. 2009;24(5):1506–23. PubMed PMID: 19001560. Epub 2008/11/13.eng.

    Article  PubMed  Google Scholar 

  73. Tomiyama C, Higa A, Dalboni MA, Cendoroglo M, Draibe SA, Cuppari L, et al. The impact of traditional and non-traditional risk factors on coronary calcification in pre-dialysis patients. Nephrol Dial Transplant. 2006;21(9):2464–71. PubMed PMID: 16735378. Epub 2006/06/01.eng.

    Article  PubMed  Google Scholar 

  74. Dellegrottaglie S, Saran R, Gillespie B, Zhang X, Chung S, Finkelstein F, et al. Prevalence and predictors of cardiovascular calcium in chronic kidney disease (from the Prospective Longitudinal RRI-CKD Study). Am J Cardiol. 2006;98(5):571–6. PubMed PMID: 16923438. Epub 2006/08/23.eng.

    Article  PubMed  CAS  Google Scholar 

  75. Vaziri ND. Dyslipidemia of chronic renal failure: the nature, mechanisms, and potential consequences. Am J Physiol Renal Physiol. 2006;290(2):F262–72. PubMed PMID: 16403839. Epub 2006/01/13.eng.

    Article  PubMed  CAS  Google Scholar 

  76. Attman PO, Alaupovic P. Lipid abnormalities in chronic renal insufficiency. Kidney Int Suppl. 1991;31:S16–23. PubMed PMID: 2046265.

    PubMed  CAS  Google Scholar 

  77. Vaziri ND, Moradi H. Mechanisms of dyslipidemia of chronic renal failure. Hemodial Int. 2006;10(1):1–7. PubMed PMID: 16441821.

    Article  PubMed  Google Scholar 

  78. Kaysen GA, Gambertoglio J, Felts J, Hutchison FN. Albumin synthesis, albuminuria and hyperlipemia in nephrotic patients. Kidney Int. 1987;31(6):1368–76. PubMed PMID: 3613408.

    Article  PubMed  CAS  Google Scholar 

  79. Attman PO, Samuelsson O, Johansson AC, Moberly JB, Alaupovic P. Dialysis modalities and dyslipidemia. Kidney Int Suppl. 2003;84:S110–2. PubMed PMID: 12694322. Epub 2003/04/16.eng.

    Article  PubMed  Google Scholar 

  80. Heimburger O, Stenvinkel P, Berglund L, Tranoeus A, Lindholm B. Increased plasma lipoprotein(a) in continuous ambulatory peritoneal dialysis is related to peritoneal transport of proteins and glucose. Nephron. 1996;72(2):135–44. PubMed PMID: 8684516. Epub 1996/01/01.eng.

    Article  PubMed  CAS  Google Scholar 

  81. Wheeler DC. Abnormalities of lipoprotein metabolism in CAPD patients. Kidney Int Suppl. 1996;56:S41–6. PubMed PMID: 8914053. Epub 1996/11/01.eng.

    PubMed  CAS  Google Scholar 

  82. Johansson AC, Samuelsson O, Attman PO, Haraldsson B, Moberly J, Knight-Gibson C, et al. Dyslipidemia in peritoneal dialysis—relation to dialytic variables. Perit Dial Int. 2000;20(3):306–14. PubMed PMID: 10898048. Epub 2000/07/18.eng.

    PubMed  CAS  Google Scholar 

  83. Shoji T, Nishizawa Y, Kawagishi T, Kawasaki K, Taniwaki H, Tabata T, et al. Intermediate-density lipoprotein as an independent risk factor for aortic atherosclerosis in hemodialysis patients. J Am Soc Nephrol. 1998;9(7):1277–84. PubMed PMID: 9644639. Epub 1998/06/30.eng.

    PubMed  CAS  Google Scholar 

  84. Grieve DJ, Avella MA, Botham KM, Elliott J. Chylomicron remnants potentiate phenylephrine-induced contractions of rat aorta by an endothelium-dependent mechanism. Atherosclerosis. 2000;151(2):471–80. PubMed PMID: 10924724. Epub 2000/08/05.eng.

    Article  PubMed  CAS  Google Scholar 

  85. Whitman SC, Sawyez CG, Miller DB, Wolfe BM, Huff MW. Oxidized type IV hypertriglyceridemic VLDL-remnants cause greater macrophage cholesteryl ester accumulation than oxidized LDL. J Lipid Res. 1998;39(5):1008–20. PubMed PMID: 9610767. Epub 1998/06/04.eng.

    PubMed  CAS  Google Scholar 

  86. Rajman I, Harper L, McPake D, Kendall MJ, Wheeler DC. Low-density lipoprotein subfraction profiles in chronic renal failure. Nephrol Dial Transplant. 1998;13(9):2281–7. PubMed PMID: 9761510. Epub 1998/10/07.eng.

    Article  PubMed  CAS  Google Scholar 

  87. Quaschning T, Krane V, Metzger T, Wanner C. Abnormalities in uremic lipoprotein metabolism and its impact on cardiovascular disease. Am J Kidney Dis. 2001;38(4 Suppl 1):S14–9. PubMed PMID: 11576915. Epub 2001/09/29.eng.

    Article  PubMed  CAS  Google Scholar 

  88. de Graaf J, Hak-Lemmers HL, Hectors MP, Demacker PN, Hendriks JC, Stalenhoef AF. Enhanced susceptibility to in vitro oxidation of the dense low density lipoprotein subfraction in healthy subjects. Arterioscler Thromb. 1991;11(2):298–306. PubMed PMID: 1998647. Epub 1991/03/01.eng.

    Article  PubMed  Google Scholar 

  89. St-Pierre AC, Cantin B, Dagenais GR, Mauriege P, Bernard PM, Despres JP, et al. Low-density lipoprotein subfractions and the long-term risk of ischemic heart disease in men: 13-year follow-up data from the Quebec Cardiovascular Study. Arterioscler Thromb Vasc Biol. 2005;25(3):553–9. PubMed PMID: 15618542. Epub 2004/12/25.eng.

    Article  PubMed  CAS  Google Scholar 

  90. Austin MA, King MC, Vranizan KM, Krauss RM. Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation. 1990;82(2):495–506. PubMed PMID: 2372896. Epub 1990/08/01.eng.

    Article  PubMed  CAS  Google Scholar 

  91. Clementi A, Kim JC, Floris M, Cruz DN, Garzotto F, Zanella M, et al. Statin therapy is associated with decreased small, dense low-density lipoprotein levels in patients undergoing peritoneal dialysis. Contrib Nephrol. 2012;178:111–5. PubMed PMID: 22652726. Epub 2012/06/02.eng.

    Article  PubMed  Google Scholar 

  92. Ok E, Basnakian AG, Apostolov EO, Barri YM, Shah SV. Carbamylated low-density lipoprotein induces death of endothelial cells: a link to atherosclerosis in patients with kidney disease. Kidney Int. 2005;68(1):173–8. PubMed PMID: 15954906. Epub 2005/06/16.eng.

    Article  PubMed  CAS  Google Scholar 

  93. Kuboyama M, Ageta M, Ishihara T, Fujiura Y, Kashio N, Ikushima I. Serum lipoprotein(a) concentration and Apo(a) isoform under the condition of renal dysfunction. J Atheroscler Thromb. 2003;10(5):283–9. PubMed PMID: 14718745. Epub 2004/01/14.eng.

    Article  PubMed  CAS  Google Scholar 

  94. Cressman MD, Heyka RJ, Paganini EP, O’Neil J, Skibinski CI, Hoff HF. Lipoprotein(a) is an independent risk factor for cardiovascular disease in hemodialysis patients. Circulation. 1992;86(2):475–82. PubMed PMID: 1386292. Epub 1992/08/01.eng.

    Article  PubMed  CAS  Google Scholar 

  95. Koda Y, Nishi S, Suzuki M, Hirasawa Y. Lipoprotein(a) is a predictor for cardiovascular mortality of hemodialysis patients. Kidney Int Suppl. 1999;71:S251–3. PubMed PMID: 10412791. Epub 1999/07/21.eng.

    Article  PubMed  CAS  Google Scholar 

  96. Steyrer E, Durovic S, Frank S, Giessauf W, Burger A, Dieplinger H, et al. The role of lecithin: cholesterol acyltransferase for lipoprotein (a) assembly. Structural integrity of low density lipoproteins is a prerequisite for Lp(a) formation in human plasma. J Clin Invest. 1994;94(6):2330–40.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  97. Erqou S, Kaptoge S, Perry PL, Di Angelantonio E, Thompson A, White IR, et al. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA. 2009;302(4):412–23. PubMed PMID: 19622820. Epub 2009/07/23.eng.

    Article  PubMed  CAS  Google Scholar 

  98. Bennet A, Di Angelantonio E, Erqou S, Eiriksdottir G, Sigurdsson G, Woodward M, et al. Lipoprotein(a) levels and risk of future coronary heart disease: large-scale prospective data. Arch Intern Med. 2008;168(6):598–608. PubMed PMID: 18362252. Epub 2008/03/26.eng.

    Article  PubMed  CAS  Google Scholar 

  99. Genest Jr JJ, Martin-Munley SS, McNamara JR, Ordovas JM, Jenner J, Myers RH, et al. Familial lipoprotein disorders in patients with premature coronary artery disease. Circulation. 1992;85(6):2025–33. PubMed PMID: 1534286. Epub 1992/06/11.eng.

    Article  PubMed  Google Scholar 

  100. Ohira T, Schreiner PJ, Morrisett JD, Chambless LE, Rosamond WD, Folsom AR. Lipoprotein(a) and incident ischemic stroke: the Atherosclerosis Risk in Communities (ARIC) study. Stroke. 2006;37(6):1407–12. PubMed PMID: 16675734. Epub 2006/05/06.eng.

    Article  PubMed  CAS  Google Scholar 

  101. Loscalzo J, Weinfeld M, Fless GM, Scanu AM. Lipoprotein(a), fibrin binding, and plasminogen activation. Arteriosclerosis. 1990;10(2):240–5. PubMed PMID: 2138452. Epub 1990/03/01.eng.

    Article  PubMed  CAS  Google Scholar 

  102. Zioncheck TF, Powell LM, Rice GC, Eaton DL, Lawn RM. Interaction of recombinant apolipoprotein(a) and lipoprotein(a) with macrophages. J Clin Invest. 1991;87(3):767–71. PubMed PMID: 1825665. Epub 1991/03/01.eng.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  103. Takami S, Yamashita S, Kihara S, Ishigami M, Takemura K, Kume N, et al. Lipoprotein(a) enhances the expression of intercellular adhesion molecule-1 in cultured human umbilical vein endothelial cells. Circulation. 1998;97(8):721–8. PubMed PMID: 9498534. Epub 1998/03/14.eng.

    Article  PubMed  CAS  Google Scholar 

  104. Boerwinkle E, Leffert CC, Lin J, Lackner C, Chiesa G, Hobbs HH. Apolipoprotein(a) gene accounts for greater than 90% of the variation in plasma lipoprotein(a) concentrations. J Clin Invest. 1992;90(1):52–60. PubMed PMID: 1386087. Epub 1992/07/01.eng.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  105. Bowden JF, Pritchard PH, Hill JS, Frohlich JJ. Lp(a) concentration and apo(a) isoform size. Relation to the presence of coronary artery disease in familial hypercholesterolemia. Arterioscler Thromb. 1994;14(10):1561–8. PubMed PMID: 7918305. Epub 1994/10/01.eng.

    Article  PubMed  CAS  Google Scholar 

  106. Kronenberg F, Neyer U, Lhotta K, Trenkwalder E, Auinger M, Pribasnig A, et al. The low molecular weight apo(a) phenotype is an independent predictor for coronary artery disease in hemodialysis patients: a prospective follow-up. J Am Soc Nephrol. 1999;10(5):1027–36. PubMed PMID: 10232689. Epub 1999/05/08.eng.

    PubMed  CAS  Google Scholar 

  107. Longenecker JC, Klag MJ, Marcovina SM, Powe NR, Fink NE, Giaculli F, et al. Small apolipoprotein(a) size predicts mortality in end-stage renal disease: the CHOICE study. Circulation. 2002;106(22):2812–8. PubMed PMID: 12451008. Epub 2002/11/27.eng.

    Article  PubMed  CAS  Google Scholar 

  108. Vaziri ND, Norris K. Lipid disorders and their relevance to outcomes in chronic kidney disease. Blood Purif. 2011;31(1–3):189–96. PubMed PMID: 21228589. Epub 2011/01/14.eng.

    Article  PubMed  CAS  Google Scholar 

  109. Herz J, Strickland DK. LRP: a multifunctional scavenger and signaling receptor. J Clin Invest. 2001;108(6):779–84. PubMed PMID: 11560943. Epub 2001/09/19.eng.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  110. Takahashi S, Kawarabayasi Y, Nakai T, Sakai J, Yamamoto T. Rabbit very low density lipoprotein receptor: a low density lipoprotein receptor-like protein with distinct ligand specificity. Proc Natl Acad Sci U S A. 1992;89(19):9252–6. PubMed PMID: 1384047. Epub 1992/10/01.eng.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  111. Cheung AK, Parker CJ, Ren K, Iverius PH. Increased lipase inhibition in uremia: identification of pre-beta-HDL as a major inhibitor in normal and uremic plasma. Kidney Int. 1996;49(5):1360–71. PubMed PMID: 8731101. Epub 1996/05/01.eng.

    Article  PubMed  CAS  Google Scholar 

  112. Akmal M, Perkins S, Kasim SE, Oh HY, Smogorzewski M, Massry SG. Verapamil prevents chronic renal failure-induced abnormalities in lipid metabolism. Am J Kidney Dis. 1993;22(1):158–63. PubMed PMID: 8322779. Epub 1993/07/01.eng.

    PubMed  CAS  Google Scholar 

  113. Sato T, Liang K, Vaziri ND. Protein restriction and AST-120 improve lipoprotein lipase and VLDL receptor in focal glomerulosclerosis. Kidney Int. 2003;64(5):1780–6. PubMed PMID: 14531811. Epub 2003/10/09.eng.

    Article  PubMed  CAS  Google Scholar 

  114. Lacour B, Roullet JB, Liagre AM, Jorgetti V, Beyne P, Dubost C, et al. Serum lipoprotein disturbances in primary and secondary hyperparathyroidism and effects of parathyroidectomy. Am J Kidney Dis. 1986;8(6):422–9. PubMed PMID: 3812471. Epub 1986/12/01.eng.

    PubMed  CAS  Google Scholar 

  115. Liang K, Oveisi F, Vaziri ND. Role of secondary hyperparathyroidism in the genesis of hypertriglyceridemia and VLDL receptor deficiency in chronic renal failure. Kidney Int. 1998;53(3):626–30. PubMed PMID: 9507207. Epub 1998/03/21.eng.

    Article  PubMed  CAS  Google Scholar 

  116. Kim C, Vaziri ND. Down-regulation of hepatic LDL receptor-related protein (LRP) in chronic renal failure. Kidney Int. 2005;67(3):1028–32. PubMed PMID: 15698441. Epub 2005/02/09.eng.

    Article  PubMed  CAS  Google Scholar 

  117. Vaziri ND, Liang K. Down-regulation of VLDL receptor expression in chronic experimental renal failure. Kidney Int. 1997;51(3):913–9. PubMed PMID: 9067930. Epub 1997/03/01.eng.

    Article  PubMed  CAS  Google Scholar 

  118. Vaziri ND, Kim CH, Dang B, Zhan CD, Liang K. Downregulation of hepatic acyl-CoA:diglycerol acyltransferase in chronic renal failure. Am J Physiol Renal Physiol. 2004;287(1):F90–4. PubMed PMID: 15010358. Epub 2004/03/11.eng.

    Article  PubMed  CAS  Google Scholar 

  119. Vaziri ND, Kim CH, Phan D, Kim S, Liang K. Up-regulation of hepatic Acyl CoA: diacylglycerol acyltransferase-1 (DGAT-1) expression in nephrotic syndrome. Kidney Int. 2004;66(1):262–7. PubMed PMID: 15200432. Epub 2004/06/18.eng.

    Article  PubMed  CAS  Google Scholar 

  120. Chmielewski M, Bryl E, Marzec L, Aleksandrowicz E, Witkowski JM, Rutkowski B. Expression of scavenger receptor CD36 in chronic renal failure patients. Artif Organs. 2005;29(8):608–14. PubMed PMID: 16048476. Epub 2005/07/29.eng.

    Article  PubMed  CAS  Google Scholar 

  121. Park SY, Song CY, Kim BC, Hong HK, Lee HS. Angiotensin II mediates LDL-induced superoxide generation in mesangial cells. Am J Physiol Renal Physiol. 2003;285(5):F909–15. PubMed PMID: 12837686. Epub 2003/07/03.eng.

    PubMed  CAS  Google Scholar 

  122. Rader DJ. Molecular regulation of HDL metabolism and function: implications for novel therapies. J Clin Invest. 2006;116(12):3090–100. PubMed PMID: 17143322. Epub 2006/12/05.eng.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  123. Fielding CJ, Fielding PE. Cellular cholesterol efflux. Biochim Biophys Acta. 2001;1533(3):175–89. PubMed PMID: 11731329. Epub 2001/12/04.eng.

    Article  PubMed  CAS  Google Scholar 

  124. Kaysen GA. Hyperlipidemia in chronic kidney disease. Int J Artif Organs. 2007;30(11):987–92. PubMed PMID: 18067100. Epub 2007/12/11.eng.

    PubMed  CAS  Google Scholar 

  125. Tsimihodimos V, Dounousi E, Siamopoulos KC. Dyslipidemia in chronic kidney disease: an approach to pathogenesis and treatment. Am J Nephrol. 2008;28(6):958–73. PubMed PMID: 18612199. Epub 2008/07/10.eng.

    Article  PubMed  CAS  Google Scholar 

  126. McGrath KC, Li XH, Puranik R, Liong EC, Tan JT, Dy VM, et al. Role of 3beta-hydroxysteroid-delta 24 reductase in mediating antiinflammatory effects of high-density lipoproteins in endothelial cells. Arterioscler Thromb Vasc Biol. 2009;29(6):877–82. PubMed PMID: 19325144. Epub 2009/03/28.eng.

    Article  PubMed  CAS  Google Scholar 

  127. Bisoendial RJ, Hovingh GK, Levels JH, Lerch PG, Andresen I, Hayden MR, et al. Restoration of endothelial function by increasing high-density lipoprotein in subjects with isolated low high-density lipoprotein. Circulation. 2003;107(23):2944–8. PubMed PMID: 12771001. Epub 2003/05/29.eng.

    Article  PubMed  Google Scholar 

  128. Wang X, Rader DJ. Molecular regulation of macrophage reverse cholesterol transport. Curr Opin Cardiol. 2007;22(4):368–72. PubMed PMID: 17556891. Epub 2007/06/09.eng.

    Article  PubMed  Google Scholar 

  129. Wang X, Collins HL, Ranalletta M, Fuki IV, Billheimer JT, Rothblat GH, et al. Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J Clin Invest. 2007;117(8):2216–24. PubMed PMID: 17657311. Epub 2007/07/28.eng.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  130. Oram JF, Vaughan AM. ATP-binding cassette cholesterol transporters and cardiovascular disease. Circ Res. 2006;99(10):1031–43. PubMed PMID: 17095732. Epub 2006/11/11.eng.

    Article  PubMed  CAS  Google Scholar 

  131. Zhao Y, Marcel YL. Serum albumin is a significant intermediate in cholesterol transfer between cells and lipoproteins. Biochemistry. 1996;35(22):7174–80. PubMed PMID: 8679545. Epub 1996/06/04.eng.

    Article  PubMed  CAS  Google Scholar 

  132. Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science. 1996;271(5248):518–20. PubMed PMID: 8560269. Epub 1996/01/26.eng.

    Article  PubMed  CAS  Google Scholar 

  133. Attman PO, Samuelsson O, Alaupovic P. Lipoprotein metabolism and renal failure. Am J Kidney Dis. 1993;21(6):573–92. PubMed PMID: 8503411. Epub 1993/06/01.eng.

    PubMed  CAS  Google Scholar 

  134. Vaziri ND, Deng G, Liang K. Hepatic HDL receptor, SR-B1 and Apo A-I expression in chronic renal failure. Nephrol Dial Transplant. 1999;14(6):1462–6. PubMed PMID: 10383008. Epub 1999/06/26.eng.

    Article  PubMed  CAS  Google Scholar 

  135. Liang K, Kim CH, Vaziri ND. HMG-CoA reductase inhibition reverses LCAT and LDL receptor deficiencies and improves HDL in rats with chronic renal failure. Am J Physiol Renal Physiol. 2005;288(3):F539–44. PubMed PMID: 15507547. Epub 2004/10/28.eng.

    Article  PubMed  CAS  Google Scholar 

  136. Moradi H, Pahl MV, Elahimehr R, Vaziri ND. Impaired antioxidant activity of high-density lipoprotein in chronic kidney disease. Transl Res. 2009;153(2):77–85. PubMed PMID: 19138652. Epub 2009/01/14.eng.

    Article  PubMed  CAS  Google Scholar 

  137. Shao B, Oda MN, Oram JF, Heinecke JW. Myeloperoxidase: an inflammatory enzyme for generating dysfunctional high density lipoprotein. Curr Opin Cardiol. 2006;21(4):322–8. PubMed PMID: 16755201. Epub 2006/06/07.eng.

    Article  PubMed  Google Scholar 

  138. Van Lenten BJ, Reddy ST, Navab M, Fogelman AM. Understanding changes in high density lipoproteins during the acute phase response. Arterioscler Thromb Vasc Biol. 2006;26(8):1687–8. PubMed PMID: 16857958. Epub 2006/07/22.eng.

    Article  PubMed  CAS  Google Scholar 

  139. Ansell BJ, Navab M, Hama S, Kamranpour N, Fonarow G, Hough G, et al. Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation. 2003;108(22):2751–6. PubMed PMID: 14638544. Epub 2003/11/26.eng.

    Article  PubMed  CAS  Google Scholar 

  140. Moradi H, Yuan J, Ni Z, Norris K, Vaziri ND. Reverse cholesterol transport pathway in experimental chronic renal failure. Am J Nephrol. 2009;30(2):147–54. PubMed PMID: 19321994. Epub 2009/03/27.eng.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  141. Vaziri ND, Moradi H, Pahl MV, Fogelman AM, Navab M. In vitro stimulation of HDL anti-inflammatory activity and inhibition of LDL pro-inflammatory activity in the plasma of patients with end-stage renal disease by an apoA-1 mimetic peptide. Kidney Int. 2009;76(4):437–44. PubMed PMID: 19471321. Epub 2009/05/28.eng.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  142. van der Steeg WA, Kuivenhoven JA, Klerkx AH, Boekholdt SM, Hovingh GK, Kastelein JJ. Role of CETP inhibitors in the treatment of dyslipidemia. Curr Opin Lipidol. 2004;15(6):631–6. PubMed PMID: 15529021. Epub 2004/11/06.eng.

    Article  PubMed  Google Scholar 

  143. Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357(21):2109–22. PubMed PMID: 17984165. Epub 2007/11/07.eng.

    Article  PubMed  CAS  Google Scholar 

  144. Bots ML, Visseren FL, Evans GW, Riley WA, Revkin JH, Tegeler CH, et al. Torcetrapib and carotid intima-media thickness in mixed dyslipidaemia (RADIANCE 2 study): a randomised, double-blind trial. Lancet. 2007;370(9582):153–60. PubMed PMID: 17630038. Epub 2007/07/17.eng.

    Article  PubMed  CAS  Google Scholar 

  145. Vaziri ND, Navab M, Fogelman AM. HDL metabolism and activity in chronic kidney disease. Nat Rev Nephrol. 2010;6(5):287–96. PubMed PMID: 20308998. Epub 2010/03/24.eng.

    Article  PubMed  CAS  Google Scholar 

  146. Seiler S, Schlitt A, Jiang XC, Ulrich C, Blankenberg S, Lackner KJ, et al. Cholesteryl ester transfer protein activity and cardiovascular events in patients with chronic kidney disease stage V. Nephrol Dial Transplant. 2008;23(11):3599–604. PubMed PMID: 18503096. Epub 2008/05/27.eng.

    Article  PubMed  CAS  Google Scholar 

  147. Navab M, Reddy ST, Van Lenten BJ, Anantharamaiah GM, Fogelman AM. The role of dysfunctional HDL in atherosclerosis. J Lipid Res. 2009;50(Suppl):S145–9. PubMed PMID: 18955731. Epub 2008/10/29.eng.

    PubMed  PubMed Central  Google Scholar 

  148. Libby P. Inflammation in atherosclerosis. Nature. 2002;420(6917):868–74. PubMed PMID: 12490960. Epub 2002/12/20.eng.

    Article  PubMed  CAS  Google Scholar 

  149. Falk E. Pathogenesis of atherosclerosis. J Am Coll Cardiol. 2006;47(8 Suppl):C7–12. PubMed PMID: 16631513. Epub 2006/04/25.eng.

    Article  PubMed  CAS  Google Scholar 

  150. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352(16):1685–95. PubMed PMID: 15843671. Epub 2005/04/22.eng.

    Article  PubMed  CAS  Google Scholar 

  151. Davies MJ. The pathophysiology of acute coronary syndromes. Heart. 2000;83(3):361–6. PubMed PMID: 10677422. Epub 2000/03/04.eng.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  152. Schwarz U, Buzello M, Ritz E, Stein G, Raabe G, Wiest G, et al. Morphology of coronary atherosclerotic lesions in patients with end-stage renal failure. Nephrol Dial Transplant. 2000;15(2):218–23. PubMed PMID: 10648668. Epub 2000/01/29.eng.

    Article  PubMed  CAS  Google Scholar 

  153. London GM, Parfrey PS. Cardiac disease in chronic uremia: pathogenesis. Adv Ren Replace Ther. 1997;4(3):194–211. PubMed PMID: 9239425. Epub 1997/07/01.eng.

    PubMed  CAS  Google Scholar 

  154. Qunibi WY. Reducing the burden of cardiovascular calcification in patients with chronic kidney disease. J Am Soc Nephrol. 2005;16 Suppl 2:S95–102. PubMed PMID: 16251249. Epub 2005/10/28.eng.

    Article  PubMed  CAS  Google Scholar 

  155. Russo D, Palmiero G, De Blasio AP, Balletta MM, Andreucci VE. Coronary artery calcification in patients with CRF not undergoing dialysis. Am J Kidney Dis. 2004;44(6):1024–30. PubMed PMID: 15558523. Epub 2004/11/24.eng.

    Article  PubMed  Google Scholar 

  156. Budisavljevic MN, Cheek D, Ploth DW. Calciphylaxis in chronic renal failure. J Am Soc Nephrol. 1996;7(7):978–82. PubMed PMID: 8829111. Epub 1996/07/01.eng.

    PubMed  CAS  Google Scholar 

  157. Ketteler M, Schlieper G, Floege J. Calcification and cardiovascular health: new insights into an old phenomenon. Hypertension. 2006;47(6):1027–34. PubMed PMID: 16618842. Epub 2006/04/19.eng.

    Article  PubMed  CAS  Google Scholar 

  158. Covic A, Kanbay M, Voroneanu L, Turgut F, Serban DN, Serban IL, et al. Vascular calcification in chronic kidney disease. Clin Sci (Lond). 2010;119(3):111–21. PubMed PMID: 20443781. Epub 2010/05/07.eng.

    Article  CAS  Google Scholar 

  159. Parfrey PS, Foley RN. The clinical epidemiology of cardiac disease in chronic renal failure. J Am Soc Nephrol. 1999;10(7):1606–15. PubMed PMID: 10405218. Epub 1999/07/15.eng.

    PubMed  CAS  Google Scholar 

  160. United States Rena Data System 2007. Mortality and cause of death. www.usrds.org/2007/ref/H_morte_07.pdf.

  161. Heymann EP, Kassimatis TI, Goldsmith DJ. Dyslipidemia, statins, and CKD patients’ outcomes—review of the evidence in the post-sharp era. J Nephrol. 2012;25(4):460–72. PubMed PMID: 22641572. Epub 2012/05/30.eng.

    Article  PubMed  CAS  Google Scholar 

  162. Kassimatis TI, Konstantinopoulos PA. Rosuvastatin in patients undergoing hemodialysis. N Engl J Med. 2009;361(1):93; author reply 4–5. PubMed PMID: 19579277. Epub 2009/07/07.eng.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodoros Kassimatis M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kassimatis, T., Goldsmith, D. (2014). CVD in CKD: Focus on the Dyslipidemia Problem. In: Covic, A., Kanbay, M., Lerma, E. (eds) Dyslipidemias in Kidney Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0515-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0515-7_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0514-0

  • Online ISBN: 978-1-4939-0515-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics