Skip to main content
  • 1644 Accesses

Abstract

Neuroscientists have long been using microelectrodes to record and stimulate neural activity—both in vitro and in vivo. On one end of the spectrum of electrode-based techniques are the sharp-glass and patch micropipette electrodes; on the other end are dense arrays of metal-based microelectrodes. Glass micropipette electrodes enable intracellular recording of action potentials and synaptic potentials with excellent signal-to-noise ratio, but because of their bulkiness, they allow for the recording and stimulation of only several neurons at a time. In addition, the injury inflicted on the cell plasma membrane during electrode entry and recording limits the duration of the recording session, usually to a small number of hours at most. By contrast, multielectrode devices are able to record and stimulate much larger populations of neurons for durations of weeks and even months. This is made possible due to fabrication technologies that allow for a scalable design of hundreds or even thousands of electrodes. These devices, however, have been able to provide only extracellular recording and stimulation with limited signal-to-noise ratio due to the extracellular positioning of the electrode in respect to the neuron’s plasma membrane. The inability to record intracellular signals from many neurons and for long periods of time has thus far prevented neuroscience from answering the most basic and interesting questions regarding learning and memory in large populations of neurons. This is because the vast majority of neurons in complex nervous systems are usually “silent” and will generate an action potential only when their complex synaptic inputs integrate appropriately. We are therefore blind to the rich milieu of synaptic interactions, synaptic plasticity, and subthreshold network oscillations that reflect the state of the studied nervous system. This chapter describes a recently developed technique termed in-cell recording. This technique yielded for the first time simultaneous, multisite, long-term recordings of action potentials and subthreshold synaptic potentials with matching quality and signal-to-noise ratio of conventional intracellular glass electrodes and the scalability of fabricated multielectrode devices. The in-cell recording and stimulation technique makes use of an array of cell-noninvasive micrometer-size protruding gold mushroom-shaped microelectrodes (gMμEs). The key to the multielectrode in-cell recording approach is the outcome of three converging cell-biological principles: (a) the activation of endocytotic-like mechanisms in which the cultured cells are induced to actively engulf gMμEs that protrude from the substrate, (b) the generation of high seal resistance between the cell’s membrane and the engulfed gMμE, and (c) the localization of ionic channels (ohmic conductance) in the plasma membrane that faces the gMμE. We will describe the electrical, ultrastructural, and cell-biological properties of the interface between the cells and the gMμEs and provide the reader with a digest of the published studies carried out for the development of this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernstein, J.: Ueber den zeitlichen Verlauf der negativen Schwankung des Nervenstroms. Pfliiger’s Arch. ges. Physiol. 1, 173–207 (1868)

    Article  Google Scholar 

  2. Galvani, L.: De viribus electricitatis in motu musculari commentarius. Bon Sci Art Inst Acad Comm 7, 363–418 (1791)

    Google Scholar 

  3. Galvani, L.: Opere edite ed inedite del Professore Luigi Galvani raccolte e pubblicate dall’Accademia delle Science dell’Istituto di Bologna. Dall’Olmo, Bologna (1841)

    Google Scholar 

  4. Helmholtz, H.: Note sur la vitesse de propagation de l’agent nerveux dans le nerfs rachidiens. C R Acad Sci (Paris) 30, 204–206 (1850)

    Google Scholar 

  5. Verkhratsky, A., Krishtal, O. A. & Petersen, O. H.: From Galvani to patch clamp: the development of electrophysiology. Pflugers Arch 453, 233–247 (2006)

    Article  Google Scholar 

  6. Hodgkin, A. L.: Evidence for electrical transmission in nerve: Part II. J Physiol 90, 211–232 (1937)

    Google Scholar 

  7. Armstrong, C. M.: Life among the axons. Annu Rev Physiol 69, 1–18 (2007)

    Article  Google Scholar 

  8. Grundfest, H.: The mechanisms of discharge of the electric organs in relation to general and comparative electrophysiology. Prog Biophys Biophys Chem 7, 1–85 (1957)

    Google Scholar 

  9. Eccles, J. C., Eccles, R. M. & Lundberg, A.: Synaptic actions on motoneurones in relation to the two components of the group I muscle afferent volley. J Physiol 136, 527–546 (1957)

    Google Scholar 

  10. Hodgkin, A. H., Huxley, A.F.: Action potentials recorded from inside a nerve fibre. Nature 144, 710–711 (1939)

    Article  Google Scholar 

  11. Sakmann, B. & Neher, E.: Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol 46, 455–472 (1984)

    Article  Google Scholar 

  12. Berger, T. K., Perin, R., Silberberg, G. & Markram, H.: Frequency-dependent disynaptic inhibition in the pyramidal network: a ubiquitous pathway in the developing rat neocortex. J Physiol 587, 5411–5425 (2009)

    Article  Google Scholar 

  13. Hochberg, L. R. et al.: Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 (2006)

    Article  Google Scholar 

  14. Hartline, F. F.: Biological applications for voltage sensitive dyes. Science 203, 992–994 (1979)

    Article  Google Scholar 

  15. Loew, L. M., Cohen, L. B., Salzberg, B. M., Obaid, A. L. & Bezanilla, F.: Charge-shift probes of membrane potential. Characterization of aminostyrylpyridinium dyes on the squid giant axon. Biophys J 47, 71–77 (1985)

    Article  Google Scholar 

  16. Shoham, D. et al.: Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes. Neuron 24, 791–802 (1999)

    Article  Google Scholar 

  17. Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A.: In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci U S A 100, 7319–7324 (2003)

    Article  Google Scholar 

  18. Higley, M. J. & Sabatini, B. L.: Calcium signaling in dendrites and spines: practical and functional considerations. Neuron 59, 902–913 (2008)

    Article  Google Scholar 

  19. Rothschild, G., Nelken, I. & Mizrahi, A.: Functional organization and population dynamics in the mouse primary auditory cortex. Nat Neurosci 13, 353–360 (2010)

    Article  Google Scholar 

  20. Kwong, K. K. et al.: Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89, 5675–5679 (1992)

    Article  Google Scholar 

  21. Bandettini, P. A., Jesmanowicz, A., Wong, E. C. & Hyde, J. S.: Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med 30, 161–173 (1993)

    Article  Google Scholar 

  22. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K.: Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8, 1263–1268 (2005)

    Article  Google Scholar 

  23. Deisseroth, K. et al.: Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 26, 10380–10386 (2006)

    Article  Google Scholar 

  24. Gradinaru, V. et al.: Targeting and readout strategies for fast optical neural control in vitro and in vivo. J Neurosci 27, 14231–14238 (2007)

    Article  Google Scholar 

  25. Lee, J. H. et al.: Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 465, 788–792 (2010)

    Article  Google Scholar 

  26. Bradley, P. M., Murphy, D., Kasparov, S., Croker, J. & Paton, J. F.: A micro-optrode for simultaneous extracellular electrical and intracellular optical recording from neurons in an intact oscillatory neuronal network. J Neurosci Methods 168, 383–395 (2008)

    Article  Google Scholar 

  27. Zhang, J. et al.: A microelectrode array incorporating an optical waveguide device for stimulation and spatiotemporal electrical recording of neural activity. Conf Proc IEEE Eng Med Biol Soc 2009, 2046–2049 (2009)

    Google Scholar 

  28. Anikeeva, P. et al.: Optetrode: a multichannel readout for optogenetic control in freely moving mice. Nat Neurosci 15, 163–170 (2012)

    Article  Google Scholar 

  29. Logothetis, N. K.: What we can do and what we cannot do with fMRI. Nature 453, 869–878 (2008)

    Article  Google Scholar 

  30. Berdondini, L. et al.: Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip 9, 2644–2651 (2009)

    Article  Google Scholar 

  31. Bologna, L. L. et al.: Low-frequency stimulation enhances burst activity in cortical cultures during development. Neuroscience 165, 692–704 (2010)

    Article  Google Scholar 

  32. Shahaf, G. et al.: Order-based representation in random networks of cortical neurons. PLoS Comput Biol 4, e1000228 (2008)

    Article  MathSciNet  Google Scholar 

  33. Rubehn, B., Bosman, C., Oostenveld, R., Fries, P. & Stieglitz, T.: A MEMS-based flexible multichannel ECoG-electrode array. J Neural Eng 6, 036003 (2009)

    Article  Google Scholar 

  34. Hutzler, M. et al.: High-resolution multitransistor array recording of electrical field potentials in cultured brain slices. J Neurophysiol 96, 1638–1645 (2006)

    Article  Google Scholar 

  35. Wise, K. D. & Najafi, K.: Microfabrication techniques for integrated sensors and microsystems. Science 254, 1335–1342 (1991)

    Article  Google Scholar 

  36. Campbell, P. K., Jones, K. E., Huber, R. J., Horch, K. W. & Normann, R. A.: A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans Biomed Eng 38, 758–768 (1991)

    Article  Google Scholar 

  37. Shein, M. et al.: Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays. Biomedical Microdevices 11, 495–501 (2009)

    Article  Google Scholar 

  38. Eytan, D. & Marom, S.: Dynamics and effective topology underlying synchronization in networks of cortical neurons. J Neurosci 26, 8465–8476 (2006)

    Article  Google Scholar 

  39. McCreery, D., Pikov, V. & Troyk, P. R.: Neuronal loss due to prolonged controlled-current stimulation with chronically implanted microelectrodes in the cat cerebral cortex. J Neural Eng 7, 036005 (2010)

    Article  Google Scholar 

  40. Fromherz, P.:Neuroelectronic Interfacing: Semiconductor Chips with Ion Channels, Nerve Cells and Brain. In: Waser, P. (ed.) Neuroelectronic interfacing: Semiconductor chips with ion channels, nerve cells, and brain. Wiley-VCH, Berlin (2003)

    Google Scholar 

  41. Fromherz, P., Offenhausser, A., Vetter, T. & Weis, J.: A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor. Science 252, 1290–1293 (1991)

    Article  Google Scholar 

  42. Fromherz, P.: Three levels of neuroelectronic interfacing: silicon chips with ion channels, nerve cells, and brain tissue. Ann N Y Acad Sci 1093, 143–160 (2006)

    Article  Google Scholar 

  43. Neves, G., Cooke, S. F. & Bliss, T. V.: Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9, 65–75 (2008)

    Article  Google Scholar 

  44. Spira, M. E. & Hai, A.: Multi-electrode array technologies for neuroscience and cardiology. Nat Nanotechnol 8, 83–94 (2013)

    Article  Google Scholar 

  45. Shoham, S., Fellows, M. R. & Normann, R. A.: Robust, automatic spike sorting using mixtures of multivariate t-distributions. J Neurosci Methods 127, 111–122 (2003)

    Article  Google Scholar 

  46. Fee, M. S., Mitra, P. P. & Kleinfeld, D.: Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-Gaussian variability. J Neurosci Methods 69, 175–188 (1996)

    Article  Google Scholar 

  47. Spira, M.E. et al.: Improved neuronal adhesion to the surface of electronic device by engulfment of protruding micro-nails fabricated on the chip surface. Transducers ‘07 & Eurosensors Xxi, Digest of Technical Papers, Vols 1 and 2, 1247–1250 (2007)

    Google Scholar 

  48. Hai, A. et al.: Spine-shaped gold protrusions improve the adherence and electrical coupling of neurons with the surface of micro-electronic devices. J R Soc Interface 6, 1153–1165 (2009)

    Article  Google Scholar 

  49. Hai, A. et al.: Changing gears from chemical adhesion of cells to flat substrata toward engulfment of micro-protrusions by active mechanisms. J Neural Eng 6, 066009 (2009)

    Article  Google Scholar 

  50. Hai, A., Shappir, J. & Spira, M. E.: Long-term, multisite, parallel, in-cell recording and stimulation by an array of extracellular microelectrodes. J Neurophysiol 104, 559–568 (2010)

    Article  Google Scholar 

  51. Hai, A., Shappir, J. & Spira, M. E.: In-cell recordings by extracellular microelectrodes. Nat Methods 7, 200–202 (2010)

    Article  Google Scholar 

  52. Hai, A. & Spira, M. E.: On-chip electroporation, membrane repair dynamics and transient in-cell recordings by arrays of gold mushroom-shaped microelectrodes. Lab Chip 12, 2865–2873 (2012)

    Article  Google Scholar 

  53. Roelandse, M., Welman, A., Wagner, U., Hagmann, J. & Matus, A.: Focal motility determines the geometry of dendritic spines. Neuroscience 121, 39–49 (2003)

    Article  Google Scholar 

  54. Stuart, L. M. & Ezekowitz, R. A.: Phagocytosis: elegant complexity. Immunity 22, 539–550 (2005)

    Article  Google Scholar 

  55. Dupuy, A. G. & Caron, E.: Integrin-dependent phagocytosis: spreading from microadhesion to new concepts. J Cell Sci 121, 1773–1783 (2008)

    Article  Google Scholar 

  56. Geiger, B., Spatz, J. P. & Bershadsky, A. D.: Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10, 21–33 (2009)

    Article  Google Scholar 

  57. Fendyur, A. & Spira, M. E.: Toward on-chip, in-cell recordings from cultured cardiomyocytes by arrays of gold mushroom-shaped microelectrodes. Front Neuroeng 5, 21 (2012)

    Article  Google Scholar 

  58. Fendyur, A., Mazurski, N., Shappir, J. & Spira, M. E.: Formation of Essential Ultrastructural Interface between Cultured Hippocampal Cells and Gold Mushroom-Shaped MEA- Toward “IN-CELL” Recordings from Vertebrate Neurons. Front Neuroeng 4, 14 (2012)

    Google Scholar 

  59. Oren, R. et al.: Electrically conductive 2D-PAN-containing surfaces as a culturing substrate for neurons. J Biomater Sci Polym Ed 15, 1355–1374 (2004)

    Article  Google Scholar 

  60. Cohen, A., Shappir, J., Yitzchaik, S. & Spira, M. E.: Reversible transition of extracellular field potential recordings to intracellular recordings of action potentials generated by neurons grown on transistors. Biosens Bioelectron 23, 811–819 (2008)

    Article  Google Scholar 

  61. Studer, D., Humbel, B. M. & Chiquet, M.: Electron microscopy of high pressure frozen samples: bridging the gap between cellular ultrastructure and atomic resolution. Histochem Cell Biol 130, 877–889 (2008)

    Article  Google Scholar 

  62. Castellano, F., Chavrier, P. & Caron, E.: Actin dynamics during phagocytosis. Semin Immunol 13, 347–355 (2001)

    Article  Google Scholar 

  63. Sahly, I., Erez, H., Khoutorsky, A., Shapira, E. & Spira, M. E.: Effective expression of the green fluorescent fusion proteins in cultured Aplysia neurons. J Neurosci Methods 126, 111–117 (2003)

    Article  Google Scholar 

  64. Sahly, I., Khoutorsky, A., Erez, H., Prager-Khoutorsky, M. & Spira, M. E.: On-line confocal imaging of the events leading to structural dedifferentiation of an axonal segment into a growth cone after axotomy. J Comp Neurol 494, 705–720 (2006)

    Article  Google Scholar 

  65. Decourt, B., Munnamalai, V., Lee, A. C., Sanchez, L. & Suter, D. M.: Cortactin Colocalizes With Filopodial Actin and Accumulates at IgCAM Adhesion Sites in Aplysia Growth Cones. Journal of Neuroscience Research 87, 1057–1068 (2009)

    Article  Google Scholar 

  66. Endlich, N., Otey, C. A., Kriz, W. & Endlich, K.: Movement of stress fibers away from focal adhesions identifies focal adhesions as sites of stress fiber assembly in stationary cells. Cell Motil Cytoskeleton 64, 966–76 (2007)

    Article  Google Scholar 

  67. Bradke, F., Fawcett, J. W. & Spira, M. E.: Assembly of a new growth cone after axotomy: the precursor to axon regeneration. Nat Rev Neurosci 13, 183–193 (2012)

    Google Scholar 

  68. Pollard, T. D. & Cooper, J. A.: Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem 55, 987–1035 (1986)

    Article  Google Scholar 

  69. Bailey, C. H. & Chen, M.: Time course of structural changes at identified sensory neuron synapses during long-term sensitization in Aplysia. J Neurosci 9, 1774–1780 (1989)

    Google Scholar 

  70. Honkura, N., Matsuzaki, M., Noguchi, J., Ellis-Davies, G. C. & Kasai, H.: The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron 57, 719–729 (2008)

    Article  Google Scholar 

  71. Bourne, J., Morgan, J. R. & Pieribone, V. A.: Actin polymerization regulates clathrin coat maturation during early stages of synaptic vesicle recycling at lamprey synapses. J Comp Neurol 497, 600–609 (2006)

    Article  Google Scholar 

  72. Shupliakov, O. et al.: Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton. Proc Natl Acad Sci U S A 99, 14476–14481 (2002)

    Article  Google Scholar 

  73. Malkinson, G. et al.: Calcium-induced exocytosis from actomyosin-driven, motile varicosities formed by dynamic clusters of organelles. Brain Cell Biol 35, 57–73 (2006)

    Article  Google Scholar 

  74. Benbassat, D. & Spira, M. E.: The Survival of Transected Axonal Segments of Cultured Aplysia Neurons Is Prolonged by Contact with Intact Nerve-Cells. European Journal of Neuroscience 6, 1605–1614 (1994)

    Article  Google Scholar 

  75. Mortari, A., Maaroof, A., Martin, D. & Cortie, M. B.: Mesoporous gold electrodes for sensors based on electrochemical double layer capacitance. Sensors and Actuators B-Chemical 123, 262–268 (2007)

    Article  Google Scholar 

  76. McGillivray, R. & Wald, R.: Dual-path capacitance compensation network for microelectrode recordings. Am J Physiol 238, H930–1 (1980)

    Google Scholar 

  77. Wilson, C. J. & Park, M. R.: Capacitance compensation and bridge balance adjustment in intracellular recording from dendritic neurons. J Neurosci Methods 27, 51–75 (1989)

    Article  Google Scholar 

  78. Schoen, I. & Fromherz, P.: Extracellular stimulation of mammalian neurons through repetitive activation of Na+ channels by weak capacitive currents on a silicon chip. Journal of Neurophysiology 100, 346–357 (2008)

    Article  Google Scholar 

  79. Ryttsen, F. et al.: Characterization of single-cell electroporation by using patch-clamp and fluorescence microscopy. Biophys J 79, 1993–2001 (2000)

    Article  Google Scholar 

  80. Rubinsky, B.: Irreversible electroporation in medicine. Technol Cancer Res Treat 6, 255–260 (2007)

    Google Scholar 

  81. Brummer, S. B., Robblee, L. S. & Hambrecht, F. T.: Criteria for selecting electrodes for electrical stimulation: theoretical and practical considerations. Ann N Y Acad Sci 405, 159–171 (1983)

    Article  Google Scholar 

  82. Harnack, D. et al.: The effects of electrode material, charge density and stimulation duration on the safety of high-frequency stimulation of the subthalamic nucleus in rats. J Neurosci Methods 138, 207–216 (2004)

    Article  Google Scholar 

  83. Yao, Y. et al.: Influence of electroporation on the biological activities of primary rat hepatocytes. Zhonghua Gan Zang Bing Za Zhi 9, 178–180 (2001)

    Google Scholar 

  84. Merrill, D. R., Bikson, M. & Jefferys, J. G.: Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods 141, 171–198 (2005)

    Article  Google Scholar 

  85. Hille, B.: Ion Channels of Excitable Membranes. Sinauer, Sunderland, MA (2001)

    Google Scholar 

  86. Vogel, V. & Sheetz, M.: Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7, 265–275 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The author was supported by a doctoral scholarship from the Israeli Council for Higher Education, a postdoctoral fellowship from the Edmond & Lily Safra Center for Brain Sciences (ELSC), and a fellowship from the European Molecular Biology Organization (EMBO). The research described in this chapter was originated in the laboratory of Prof. Micha E. Spira in collaboration with Prof. Joseph Shappir of the Hebrew University of Jerusalem, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aviad Hai Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hai, A. (2014). In-Cell Recording and Stimulation by Engulfment Mechanisms. In: De Vittorio, M., Martiradonna, L., Assad, J. (eds) Nanotechnology and Neuroscience: Nano-electronic, Photonic and Mechanical Neuronal Interfacing. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8038-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-8038-0_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-8037-3

  • Online ISBN: 978-1-4899-8038-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics