Skip to main content

Axoplasmic Transport

  • Chapter
Handbook of Neurochemistry

Abstract

When an axon is severed, the portion separated from the perikaryon degenerates and there is progressive regeneration from the perikaryal stump. This observation is the basis for the concept that the viability of the axon is dependent upon transport of materials from the nerve cell body. It illustrates not only that the axon cannot survive without perikaryal materials but also that the nerve cell body, even in adulthood, has the capacity to synthesize and transport all these critical constituents. In the past few years there has been increasing study of the details of axoplasmic transport. Although it would appear that a major function of this process is the replacement of axonal materials that have been degraded or secreted, increasing attention is being directed to the possibility that materials are transported selectively for regulation of aspects of axonal or nerve ending function. The possibility that important biosynthetic processes can occur in the axon and nerve ending independent of the perikaryon also is being investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. H. Barondes and F. E. Samson, Axoplasmic Transport, Report of a Work Session, Neurosciences Research Program Bulletin (1967).

    Google Scholar 

  2. P. Weiss, in Axoplasmic Transport, Report of a Work Session, Neurosciences Research Program Bulletin (1967).

    Google Scholar 

  3. L. Lubinska, Axoplasmic streaming in regenerating and in normal nerve fibers, in Progress in Brain Research (M. Singer and J. P. Schade, Eds.), Vol. 13, pp. 1–71, Elsevier, Amsterdam (1964).

    Google Scholar 

  4. R. L. Friede, Convection of cytoplasm and its constituents within nerve cells, in Topographic Brain Chemistry, pp. 388–400, Academic Press, New York (1966).

    Google Scholar 

  5. P. Weiss and H. B. Hiscoe, Experiments on the mechanism of nerve growth, J. Exptl. Zool. 107: 315–395 (1948).

    Article  CAS  Google Scholar 

  6. P. Weiss and A. Pillai, Convection and fate of mitochondria in nerve fibers: Axonal flow as vehicle, Proc. Natl. Acad. Sci. 54: 48–56 (1965).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. A. Dahlström, The transport of noradrenaline between two simultaneously performed ligations of the sciatic nerves of rat and cat, Acta Physiol. Scand. 69: 158–166 (1967).

    Article  PubMed  Google Scholar 

  8. A. Dahlström, in Axoplasmic Transport, Report of a Work Session, Neurosciences Research Program Bulletin (1967).

    Google Scholar 

  9. R. L. Friede, Transport of oxidative enzymes in nerve fibers. A histochemical investigation of the regenerative cycle in neurons, Exptl. Neurol. 1: 441–466 (1959).

    Article  CAS  Google Scholar 

  10. G. W. Kreutzberg and W. Wechsler, Histochemische Untersuchungen oxydativer Enzyme am regenerierenden Nervus ischiadicus der Ratte, Acta Neuropathol. 2: 349–361 (1963).

    Article  CAS  Google Scholar 

  11. N. Miani, Mechanism of Neural Regeneration, in Progress in Brain Research (M. Singer and J. P. Schade, Eds.), Vol. 13, pp. 115–126, Elsevier, Amsterdam (1964).

    Google Scholar 

  12. H. Koenig, The synthesis and peripheral flow of axoplasm, Trans. Am. Neurol. Assoc. 83: 162–164 (1958).

    Google Scholar 

  13. L. Lubinska, S. Niemierko, B. Oderfeld, L. Swarc, and J. Zelena, Bi-directional movements of axoplasm in peripheral nerve fibers, Acta Biol. Exptl., Vars. 23: 239–247 (1963).

    CAS  Google Scholar 

  14. W. O. Burdwood, reported by R. D. Allen, in Axoplasmic Transport, Report of a Work Session, Neurosciences Research Program Bulletin (1967).

    Google Scholar 

  15. S. Ochs, Axoplasmic flow in neurons, in Macromolecules and Behavior (J. Gaito, ed.), Appleton-Century-Crofts, New York (1966).

    Google Scholar 

  16. B. Droz and C. P. Leblond, Axonal migration of proteins in the central nervous system and peripheral nerves as shown by radio-autography, J. Comp. Neurol. 121: 325–345 (1963).

    Article  PubMed  CAS  Google Scholar 

  17. R. J. Lasek, in Axoplasmic Transport, Report of A Work Session, Neurosciences Research Program Bulletin (1967).

    Google Scholar 

  18. B. Droz, Synthesis et transport des proteines cellulaires dans les neurones ganglionnaires: etude radioautographique quantitative en microscopie electronique, J. Microscop. 6: 201–228 (1967).

    CAS  Google Scholar 

  19. S. H. Barondes, Delayed appearance of labeled protein in isolated nerve endings and axoplasmic flow, Science 146: 779–781 (1964).

    Article  PubMed  CAS  Google Scholar 

  20. S. H. Barondes, On the site of synthesis of the mitochondrial protein of nerve endings, J. Neurochem. 13: 721–727 (1966).

    Article  PubMed  CAS  Google Scholar 

  21. S. H. Barondes, Further studies of the transport of proteins to nerve endings, J. Neurochem. 15: 343–350 (1968).

    Article  PubMed  CAS  Google Scholar 

  22. S. H. Barondes, Rapid appearance of soluble protein at nerve endings, Comm. Behay. Biol., Part A, 1: 179–181 (1968).

    Google Scholar 

  23. V. P. Whittaker, A. Michaelson, and R. J. A. Kirkland, The separation of synaptic vesicles from nerve-ending particles (synaptosomes), Biochem. J. 90: 293–303 (1964).

    PubMed  CAS  PubMed Central  Google Scholar 

  24. S. H. Barondes, Incorporation of radioactive glucosamine into macromolecules at nerve endings, J. Neurochem. 15: 699–706 (1968).

    Article  PubMed  CAS  Google Scholar 

  25. G. A. Kerkut, A. Shapiro, and R. J. Walker, The transport of labeled material from CNS to muscle along a nerve trunk, Comp. Biochem. Physiol. 23: 729–748 (1967).

    Article  PubMed  CAS  Google Scholar 

  26. G. A. Kerkut, in Axoplasmic Transport, Report of a Work Session, Neurosciences Research Program Bulletin (1967).

    Google Scholar 

  27. B. Grafstein, Transport of protein by goldfish optic nerve fibers, Science 157: 196–198 (1967).

    Article  PubMed  CAS  Google Scholar 

  28. R. J. Lasek, Axoplasmic transport in cat dorsal root ganglion cells: As studied with L-leucine-H3, Brain Res. 7: 360–377 (1968).

    Article  PubMed  CAS  Google Scholar 

  29. J. Glowinski and L. Iversen, Regional studies of catecholamines in the rat brain. III. Subcellular distribution of endogenous and exogenous catecholamines in various brain regions, Biochem. Pharmacol. 15: 977–987 (1966).

    Article  PubMed  CAS  Google Scholar 

  30. M. Singer and M. M. Salpeter, The transport of 3H-L-histidine through the Schwann and myelin sheath into the axon, including a re-evaluation of myelin function, J. Morphol. 120: 281–316 (1966).

    Article  PubMed  CAS  Google Scholar 

  31. J. Brachet, Protein synthesis in the absence of the nucleus, Nature 213: 650–655 (1967).

    Article  PubMed  CAS  Google Scholar 

  32. A. Edström, The ribonucleic acid in the Mauthner neuron of the goldfish, J. Neurochem. 11: 309–314 (1964).

    Article  Google Scholar 

  33. A. Edström, Amino acid incorporation in isolated Mauthner nerve fiber components, J. Neurochem. 13: 315–321 (1966).

    Article  Google Scholar 

  34. E. Koenig, Synthetic mechanism in the axon. II. RNA in myelin free axons of the cat, J. Neurochem. 12: 357–361 (1965).

    Article  PubMed  CAS  Google Scholar 

  35. E. Koenig, Synthetic mechanisms in the axon. IV. In vitro incorporation of 3H-precursors into axonal protein and RNA, J. Neurochem. 14:437–446 (1967).

    Google Scholar 

  36. E. Koenig, Synthetic mechanisms of the axon. I. Local axonal synthesis of acetyl-cholinesterase, J. Neurochem. 12: 343–355 (1965).

    Article  PubMed  CAS  Google Scholar 

  37. A. Lajtha and N. Marks, Cerebral protein breakdown, in Protides of the Biological Fluids (H. Peeters, ed.), pp. 103–114, Elsevier, Amsterdam (1966).

    Google Scholar 

  38. H. Heller and R. B. Clark (eds.), Neurosecretion, Academic Press, New York (1962).

    Google Scholar 

  39. I. M. Korr, P. N. Wilkinson, and F. W. Chornock, Axonal delivery of neuroplasmic components to muscle cells, Science 155: 342–345 (1967).

    Article  PubMed  CAS  Google Scholar 

  40. S. H. Barondes, in Axoplasmic Transport, Report of a Work Session, Neurosciences Research Program Bulletin (1967).

    Google Scholar 

  41. M. V. Edds, Jr., Collateral regeneration of residual motor axons in partially denervated muscles, J. Exptl. Zool. 113: 517–552 (1950).

    Article  Google Scholar 

  42. S. Ochs, Beading phenomona of myelinated nerve fibers, Science 139: 599–600 (1963).

    Article  PubMed  CAS  Google Scholar 

  43. G. Borisy and E. W. Taylor, The mechanism of action of colchicine. Binding of colchicine-3H to cellular protein, J. Cell. Biol. 34: 525–533 (1967).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. E. W. Taylor, in Axoplasmic Transport, Report of a Work Session, Neurosciences Research Program Bulletin (1967).

    Google Scholar 

  45. L. Austin and I. G. Morgan, Synaptosomal protein synthesis in a cell-free system, J. Neurochem. 15: 41–51 (1968).

    Article  PubMed  Google Scholar 

  46. L. A. Autilio, S. H. Appel, P. Pettis, and P. L. Gambetti; Biochemical studies of synapses in vitro: I. Protein synthesis, Biochemistry 7: 2615–2622 (1968).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barondes, S.H. (1969). Axoplasmic Transport. In: Lajtha, A. (eds) Handbook of Neurochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7321-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7321-4_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7301-6

  • Online ISBN: 978-1-4899-7321-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics