Skip to main content

Dilworth’s Early Papers on Residuated and Multiplicative Lattices

  • Chapter
The Dilworth Theorems

Part of the book series: Contemporary Mathematicians ((CM))

  • 350 Accesses

Abstract

The idea of residuation goes back to Dedekind, who introduced it into ideal theory. Residuation now plays an important role in several fields of mathematics, especially commutative ring theory. Let R be a commutative ring with identity. The residual of an ideal B with respect to an ideal A is the ideal A: B = {xR | xBA. Here A: B is the largest ideal X of R with the property that BXA. Residuation may be defined in other algebraic structures and may be defined independently of multiplication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D.D. Anderson, Distributive Noether lattices, Michigan Math. J. 22 (1975), 109–115.

    Article  Google Scholar 

  2. —, Fake rings, fake modules, and duality, J. Algebra 47 (1977), 425–432.

    Article  Google Scholar 

  3. —, and E.W. Johnson, Ideal theory in commutative semigroups, Semigroup Forum 30 (1984), 127–158.

    Article  Google Scholar 

  4. T.S. Blyth and M.F. Janowitz, “Residuation Theory,” Pergamon Press, Oxford, 1972.

    Google Scholar 

  5. M. Raquel P. da Costa Reis, Partial residuals in groupoid-lattices-I, Math. Japonica 25 (1980), 19–26.

    Google Scholar 

  6. P. da Costa Reis —, Partial residuals in groupoid-lattices-II, Math. Japonica 25 (1980), 607–618.

    Google Scholar 

  7. P. da Costa Reis —, Partial residuals in groupoid-lattices-III, Math. Japonica 26 (1981), 467–474.

    Google Scholar 

  8. R.P. Dilworth, Abstract residuation over lattices, Bull. Amer. Math. Soc. 44 (1938), 262–267. Reprinted in Chapter 6 of this volume.

    Article  Google Scholar 

  9. —, Non-commutative arithmetic, Duke Math. J. 5 (1939), 270–280. Reprinted in Chapter 6 of this volume.

    Article  Google Scholar 

  10. —, Non-commutative residuated lattices, Trans. Amer. Math. Soc. 46 (1939), 426–444. Reprinted in Chapter 6 of this volume.

    Google Scholar 

  11. —, Abstract commutative ideal theory, Pacific J. Math. 12 (1962), 481–498. Reprinted in Chapter 6 of this volume.

    Article  Google Scholar 

  12. M.L. Dubriel-Jacotin, L. Lesieur, and R. Croisot, “ Leçons sur la Théorie des Treillis des Structures Algébrique Ordonnés et des Treillis Géométriques,” Gauthier-Villars, Paris, 1953.

    Google Scholar 

  13. I. Fleischer, A lattice theoretic look at some ring theoretic radicals, preprint.

    Google Scholar 

  14. L. Fuchs, “Partially Ordered Algebraic Systems,” Pergamon Press, Oxford, 1963.

    Google Scholar 

  15. W.H. Rowan, Tertiary decomposition in lattice modules, Algebra Universalis 22 (1986), 27–49.

    Article  Google Scholar 

  16. O. Steinfeld, On groupoid-lattices, in “Contributions to General Algebra, Proceedings of the Klagenfurt conference,” 1978, pp. 357-372.

    Google Scholar 

  17. M. Ward, Residuation in structures over which a multiplication is defined, Duke Math. J. 3 (1937), 627–636.

    Article  Google Scholar 

  18. —, Structure residuation, Ann. of Math. (2) 39 (1938), 558–568.

    Article  Google Scholar 

  19. —, Residuated distributive lattices, Duke Math. J. 6 (1940), 641–651.

    Article  Google Scholar 

  20. —, and R.P. Dilworth, Residuated lattices, Proc. Nat. Acad. Sci. 24 (1938), 162–164.

    Article  Google Scholar 

  21. R.P. Dilworth —, Residuated lattices, Trans. Amer. Math. Soc. 35 (1939), 335–354. Reprinted in Chapter 6 of this volume.

    Article  Google Scholar 

  22. R.P. Dilworth —, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608.

    Article  Google Scholar 

  23. R.P. Dilworth —, Evaluations over residuated structures, Ann. of Math. (2) 40 (1939), 328–338.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anderson, D.D. (1990). Dilworth’s Early Papers on Residuated and Multiplicative Lattices. In: Bogart, K.P., Freese, R., Kung, J.P.S. (eds) The Dilworth Theorems. Contemporary Mathematicians. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-3558-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3558-8_36

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-3560-1

  • Online ISBN: 978-1-4899-3558-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics