Skip to main content

Energy Reserves in Acinetobacter

  • Chapter
Book cover The Biology of Acinetobacter

Part of the book series: Federation of European Microbiological Societies Symposium Series ((FEMS,volume 57))

Abstract

The first systematic investigation of the occurrence of energy reserves in Acinetobacter formed part of the delineation of the genus by Baumann et al. (1968). Their study indicated that poly-β-hydroxybutyrate was not present in any of the 106 strains examined. They examined two strains in detail and concluded that they did not accumulate special non-nitrogenous reserve materials. However, since this work, polyphosphates, poly-β-hydroxybutyrate and simple wax esters, a novel energy reserve, have been identified in a large number of acinetobacters. In several of these organisms, the compounds show many, but not all, of the characteristics of energy reserves. As the study of these compounds arose largely from investigations of other aspects of acinetobacter microbiology, this review will touch on these areas as well. The biochemistry and molecular biology of energy reserves in Acinetobacter has not been extensively studied and so this review will attempt to relate this area to what is known of the general biochemistry of bacterial energy reserves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albro, P.W., 1976, Bacterial waxes, in “Chemistry and Biochemistry of Natural Waxes,” p.419, P.E. Kolattukudy, ed., Elsevier, Amsterdam.

    Google Scholar 

  • Aleby, S., Fischmeister, I., and Iyengar, B.T.R., 1971, The infrared spectra and polymorphism of long chain esters, Lipids, 6:421.

    Article  CAS  Google Scholar 

  • Baumann, P., Doudoroff, M., and Stanier, R.Y., 1968, A study of the Moraxella group. II Oxidative-negative species (genus Acinetobacter), J. Bacteriol., 95:1520.

    CAS  PubMed  Google Scholar 

  • Beacham, A.M., Seviour, R.J., Lindrea, K.C., and Livingston, I., 1990, Genospecies diversity of Acinetobacter isolates from a biological nutrient removal pilot plant of a modified UCT configuration, Water Res., 24:23.

    Article  CAS  Google Scholar 

  • Bouvet, P.J.M., and Grimont, P.A.D., 1986, Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov., and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii, Int. J. Syst. Bacteriol., 36:228.

    CAS  Google Scholar 

  • Breuil, C., and Kushner, D.J., 1975, Lipase and esterase formation by psychrophilic and mesophilic Acinetobacter species, Can. J. Microbiol., 21:423.

    Article  CAS  PubMed  Google Scholar 

  • Brodisch, K.E.U., 1985, Interaction of different groups of micro-organisms in biological phosphate removal, Water Sci. Tech., 17:89.

    CAS  Google Scholar 

  • Brodisch, K.E.U., and Joyner, S.J., 1983, The role of microorganisms other than Acinetobacter in biological phosphate removal in activated sludge processes, Water Sci. Tech., 15:117.

    CAS  Google Scholar 

  • Bryn, K., Jantzen, E., and Bovre, K., 1977, Occurrence and patterns of waxes in Neisseriaceae, J. Gen. Microbiol., 102:33.

    Article  CAS  PubMed  Google Scholar 

  • Buchan, L., 1983, Possible biological mechanism of phosphorus removal, Water Sci. Tech., 15:87.

    CAS  Google Scholar 

  • Clifton, C.E., 1937, On the possibility of preventing assimilation in respiring cells, Enzymologia, 4:246.

    CAS  Google Scholar 

  • Cloete, T.E., and Steyn, P.L., 1988, The role of Acinetobacter as a phosphorus removing agent in activated sludge, Water Res., 22:971

    Article  CAS  Google Scholar 

  • Dawes, E.A., 1985, The effect of environmental oxygen concentration on the carbon metabolism of some aerobic bacteria, in “Environmental Regulation of Microbial Metabolism,” p.121, I.S. Kulaev, E.A. Dawes and D.W. Tempest, eds., Academic Press, London.

    Google Scholar 

  • Dawes, E.A., 1986, “Microbial Energetics,” p. 145, Blackie, London.

    Google Scholar 

  • Dawes, E.A., and Senior, P.J., 1973, The role and regulation of energy reserve polymers in microorganisms, Adv. Microb. Physiol., 10:136.

    Google Scholar 

  • De Bruyn, J., Johannes, A., Weckx, M., and Breumer-Jochmans, M-P., 1981, Partial purification and characterization of an alcohol dehydrogenase of Mycobacterium tuberculosis var. bovis (BCG), J. Gen. Microbiol., 124:359.

    PubMed  Google Scholar 

  • Deinema, M.H., Habets, L.H.A., Schalten, J., Turkstra, E., and Webers, H.A.A.M., 1980, The accumulation of polyphosphate in Acinetobacter spp. FEMS Microbiol. Lett., 9:275.

    Article  CAS  Google Scholar 

  • Deinema, M.H., Van Loosdrecht, M., and Schalten, A., 1985, Some physiological characteristics of Acinetobacter spp accumulating large amounts of phosphate, Water Sci. Tech., 17:119.

    CAS  Google Scholar 

  • DeWitt, S., Ervin, J.L., Howes-Orchison, D., Daletas, D., Neidelman, S.L., and Geigert, J., 1982, Saturated and unsaturated wax esters produced by Acinetobacter sp. HO1-N grown on C16–C20 n-alkanes, J. Amer. Oil Chem. Soc., 59:69.

    Article  CAS  Google Scholar 

  • Doi, Y., Kawaguchi, Y., Nakamura, Y., and Kunioka, M., 1989, Nuclear magnetic resonance studies of poly(3-hydroxybutyrate) and polyphosphate metabolism in Alcaligenes eutrophus, Appl. Environ. Microbiol., 55:2932.

    CAS  PubMed  Google Scholar 

  • Duncan, A., Vasiliadis, G., Bayly, R.C., May, J.W., and Rapor, W.G.C., 1988, Genospecies of Acinetobacter isolated from activated sludge showing enhanced removal of phosphate during pilot scale treatment of sewage, Biotech. Lett., 10:831.

    Article  CAS  Google Scholar 

  • Fewson, C.A., 1985, Growth yields and respiratory efficiency of Acinetobacter calcoaceticus, J. Gen. Microbiol., 131:865.

    CAS  Google Scholar 

  • Finnerty, W.R., 1977, The biochemistry of microbial alkane oxidation, new insights and perspectives, Trends Biochem. Sci., 2:73.

    Article  CAS  Google Scholar 

  • Fixter, L.M., 1976, Ultrastructural studies of Acinetobacter strains grown in carbon and nitrogen limiting batch cultures, Proc. Soc. Gen. Microbiol., 4:177.

    Google Scholar 

  • Fixter, L.M., and Fewson, C.A., 1974, The accumulation of waxes by Acinetobacter calcoaceticus NCIB 8250, Biochem. Soc. Trans., 2:944.

    CAS  Google Scholar 

  • Fixter, L.M., and McCormack, J.G., 1976, The effect of growth conditions on the wax content of various strains of Acinetobacter, Biochem. Soc. Trans., 4:504.

    CAS  PubMed  Google Scholar 

  • Fixter, L.M., and Nagi, M.N., 1984, The presence of an NADP-dependent alcohol dehydrogenase in Acinetobacter calcoaceticus, FEMS Microbiol. Lett., 22:297.

    Article  CAS  Google Scholar 

  • Fixter, L.M., Nagi, M.N., McCormack, J.G., and Fewson, C.A., 1986, Structure, distribution and function of wax esters in Acinetobacter calcoaceticus, J. Gen. Microbiol., 132:3147.

    CAS  Google Scholar 

  • Fuhs, G.W., and Chen, M., 1975, Microbiological basis of phosphate removal in the activated sludge process for treatment of wastewater, Microb. Ecol., 2:119.

    Article  CAS  Google Scholar 

  • Gallagher, I.H.C., 1971, Occurrence of waxes in Acinetobacter, J. Gen. Microbiol., 68:245.

    Article  CAS  PubMed  Google Scholar 

  • Geigert, J., Neidleman, S.L., and De Witt, S.K., 1984, Further aspects of wax ester biosynthesis by Acinetobacter sp. H01-N, J. Amer. Oil Chem. Soc, 61:1747

    Article  CAS  Google Scholar 

  • Halvorson, H.O., Suresh, N., Roberts, M.F., Cocca, M., and Chikarmane, M.M., 1987, Metabolic surface polyphosphate pool in Acinetobacter lwoffi, in “Phosphate Metabolism and Cellular Regulation in Microorganisms,” p.220, A Torriani-Gorini, F.G. Rothman, S. Silver, A. Wright and E. Yagil, eds., American Society for Microbiology, Washington D.C.

    Google Scholar 

  • Hao, O.J., and Chang, C.H., 1987, Kinetics of growth and phosphate uptake in pure culture studies of Acinetobacter species, Biotech. Bioeng., 29:819.

    Article  CAS  Google Scholar 

  • Hardy, G.A., and Dawes, E.A., 1985, Effect of oxygen concentration on the growth and respiratory efficiency of Acinetobacter calcoaceticus, J. Gen. Microbiol., 131:855.

    CAS  Google Scholar 

  • Harold, P.M., 1966, Inorganic polyphosphates in biology: structure, metabolism and functions, Bacteriol. Rev., 30:772.

    CAS  PubMed  Google Scholar 

  • Haywood, G.W., Anderson, A.J., Chu, L., and Dawes, E.A., 1988, Characterization of two 3-ketothiolases possessing differing substrate specificities in the polyhydroxyalkanoate synthesizing organism Alcaligenes eutrophus, FEMS MicrobioL Lett., 52:91.

    Article  CAS  Google Scholar 

  • Heymann, J.B., Eagle, L.M., Greben, H.A., and Potgieter, D.J.J., 1989, The isolation and characterisation of volutin granules as subcellular components involved in biological phosphorus removal, Water Sci. Tech., 21:397.

    CAS  Google Scholar 

  • Hiraishi, A., Masumune, K., and Kitamura, M., 1989, Characterisation of the bacterial population in aerobic-anaerobic activated sludge system on the basis of respiratory quinone profiles, Appl. Environ. Microbiol., 55:897.

    CAS  PubMed  Google Scholar 

  • Inui, H., Miyatake, K., Nakano, Y., and Kitaoka, S., 1982, Wax ester fermentation in Euglena gracilis, FEBS Lett., 150:89.

    Article  CAS  Google Scholar 

  • Jantzen, E., Bryn, K., Bergan, T., and Bovre, K., 1975, Gas chromatography of bacterial whole cell methanolysates VII. Fatty acid composition of Acinetobacter in relation to the taxonomy of Neisseriaceae, Acta Path. Microbiol. Scand., 83B:569.

    CAS  Google Scholar 

  • Kulaev, I.S., and Vagabov, V.M., 1983, Polyphosphate metabolism in microorganisms, Adv. Microb. Physiol., 4:83.

    Article  Google Scholar 

  • Lloyd, G.M., and Russell, N.J., 1983, Biosynthesis of wax esters in the psychrophilic bacterium Micrococcus cryophilus, J. Gen. Microbiol., 129:2641.

    CAS  Google Scholar 

  • Lotter, L.H., 1987a, Metabolic behaviour of Acinetobacter spp. in enhanced biological phosphorus removal-a biochemical model. Reply to comments, Water SA, 13:251.

    CAS  Google Scholar 

  • Lotter, L.H., 1987b, Preliminary observations on polyhydroxybutyrate metabolism in the activated sludge process, Water SA, 13:189.

    Google Scholar 

  • Lotter, L.H., and Dubery, I.A., 1989, Metabolic regulation of beta-hydroxy-butyrate dehydrogenase in Acinetobacter calcoaceticus var lwoffi, Water SA, 15:65.

    Google Scholar 

  • Lotter, L.H., Wentzel, M.C., Loewenthal, L.E., Ekama, G.A., and Marais, GvR., 1986, A study of selected characteristics of Acinetobacter spp. isolated from activated sludge in aerobic/anoxic/aerobic and aerobic systems, Water SA, 12:203.

    CAS  Google Scholar 

  • Makula, R.A., Lockwood, P.J., and Finnerty, W.R., 1975, Comparative analysis of lipids of Acinetobacter grown on hexadecane, J. Bacteriol., 121:250.

    CAS  PubMed  Google Scholar 

  • Moss, C.W., Wallace, P.L., Mollis, D.G., and Weaver, R.E., 1988, Cultural and chemical characterization of CDC groups E0-2, M-5, and M-6, Moraxella species, Oligella urethralis, Acinetobacter species, and Psychrobacter immobilis, J. Clin. Microbiol., 26:484.

    CAS  Google Scholar 

  • Murphy, M., and Lotter, L.H., 1986, The effect of acetate and succinate on polyphosphate formation and degradation in activated sludge with particular reference to Acinetobacter calcoaceticus, Appl. Microbiol. Biotech., 24:512.

    Article  CAS  Google Scholar 

  • Nagi, M.N., 1981, Some studies on wax esters of Acinetobacter calcoaceticus, PhD thesis, University of Glasgow, UK

    Google Scholar 

  • Nagi, M.N., and Fixter, L.M., 1981, Regulation of the wax content of Acinetobacter calcoaceticus. NCIB 8250, Abstr. Ann. Meet. Amer. Soc. Microbiol., K11

    Google Scholar 

  • Neidleman, S.L., 1987, Effects of temperature on lipid unsaturation, Biotech. Genet. Eng. Rev., 5:245.

    Article  CAS  Google Scholar 

  • Nesbitt, J.B., 1969, Phosphorus removal, the state of the art, J. Water Pollut. Cont. Fed., 41:701.

    CAS  Google Scholar 

  • Nicolls, H.A., and Osborn, D.W., 1979, Bacterial stress, a prerequisite for biological removal of phosphorus, J. Water Pollut. Cont. Fed., 51:557.

    Google Scholar 

  • Odham, G., Tunlid, A., Westerdahl, G., and Marden, P., 1986, Combined determination of poly-β-hydroxyalkanoic acid and cellular fatty acids in starved marine bacteria and sewage sludge by gas chromatography with flame ionization or mass spectrometry detection, Appl. Environ. Microbiol., 52:905.

    CAS  PubMed  Google Scholar 

  • Oeding, V., and Schlegel, H.G., 1973, β-Ketothiolase from Hydrogenomonas eutropha H16 and its significance in the regulation of poly-β-hydroxybutyrate metabolism, Biochem. J., 134:239.

    CAS  PubMed  Google Scholar 

  • Pedros-Alio, C., Mas, J., and Guerrero, R., 1985, The influence of poly-β-hydroxybutyrate accumulation on cell volume and buoyant density in Alcaligenes eutrophus, Arch. Microbiol., 143:178.

    Article  CAS  Google Scholar 

  • Preiss, J., 1984, Bacterial glycogen synthesis and its regulation, Ann. Rev. Microbiol., 38:419.

    Article  CAS  Google Scholar 

  • Preiss, J., 1989, Chemistry and metabolism of intracellular reserves, in “Bacteria in Nature, vol. 3,” p.189, J.S. Poindexter and E.R. Leadbetter, eds. Plenum Press, New York.

    Chapter  Google Scholar 

  • Rao, N.N., Roberts, M.F., and Torriani, A., 1987 Polyphosphate accumulation and metabolism in Escherichia coli, in “Phosphate Metabolism and Cellular Regulation in Microorganisms,” p.213, A. Torriani-Gorini, F.G. Rothman, S. Silver, A. Wright and E. Yagil, eds., American Society for Microbiology, Washington D.C.

    Google Scholar 

  • Reusch, R.N., and Sadoff, H.L., 1988, Putative structure and functions of a poly-β-hydroxybutyrate-calcium polyphosphate channel in bacterial plasma membranes, Proc. Natl. Acad. Sci. USA., 85:4176.

    Article  CAS  PubMed  Google Scholar 

  • Reusch, R.N., Hiske, T.W., and Sadoff, H.L., 1986, Poly-β-hydroxybutyrate membrane structure and its relationship to genetic transformation in Escherichia coli, J. Bacteriol., 168:553.

    CAS  PubMed  Google Scholar 

  • Reusch, R., Hiske, T., Sadoff, H., Harris, R., and Beveridge, T., 1987, Cellular incorporation of poly-β-hydroxybutyrate into plasma membranes of Escherichia coli and Azotobacter vinelandii alters native membrane structure, Can. J. Microbiol., 33:435.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, M.R., 1987, Metabolic behaviour of Acinetobacter spp. in enhanced biological phosphorus removal-a biochemical model. Comments. Water SA., 13:251.

    CAS  Google Scholar 

  • Rock, C.O., and Cronan, J.E., 1985, Lipid metabolism in prokaryotes, in “Biochemistry of Lipids and Membranes,” p.73, D.E. Vance and J.E. Vance, eds., Benjamin/Cummings, Menlo Park, California.

    Google Scholar 

  • Russell, N.J., and Volkman, J.K., 1980, The effect of growth temperature on wax ester composition in psychrophilic bacterium Micrococcus cryophilus ATCC 15174, J. Gen. Microbiol., 118:131.

    CAS  Google Scholar 

  • Sargent, J.R., 1978, Marine wax esters, Sci. Prog., 65:437.

    CAS  Google Scholar 

  • Scott, C.C.L., Makula, R.A., and Finnerty, W.R., 1976, Isolation and characterization of membranes from a hydrocarbon-oxidizing Acinetobacter sp., J. Bacteriol., 127:469.

    CAS  PubMed  Google Scholar 

  • Senior, P.J., and Dawes, E.A., 1973, The regulation of poly-β-hydroxybutyrate metabolism in Azotobacter beijerinckii, Biochem. J., 134:225.

    CAS  PubMed  Google Scholar 

  • Shabtai, Y., and Gutnick, D.L., 1985, Exocellular esterase and emulsan release from the cell surface of Acinetobacter calcoaceticus, J. Bacteriol., 161:1176.

    CAS  PubMed  Google Scholar 

  • Sherwani, M.K., and Fixter, L.M., 1989, Multiple forms of carboxylesterase activity in Acinetobacter calcoaceticus, FEMS Microbiol. Lett., 58:75.

    Article  CAS  Google Scholar 

  • Shively, J.M., 1974, Inclusion bodies of prokaryotes, Ann. Rev. Microbiol., 28:167.

    Article  CAS  Google Scholar 

  • Singer, M.E., and Finnerty, W.R., 1985a, Fatty aldehyde dehydrogenases in Acinetobacter sp. strain H0-1N: role in hexadecane and hexadecanol metabolism, J. Bacteriol., 164:1011.

    CAS  PubMed  Google Scholar 

  • Singer, M.E., and Finnerty, W.R., 1985b, Alcohol dehydrogenases in Acinetobacter sp. strain H0-1N: role in hexadecane and hexadecanol metabolism, J. Bacteriol., 164:1017.

    CAS  PubMed  Google Scholar 

  • Singer, M.E., Tyler, S.M., and Finnerty, W.R., 1984, Growth of Acinetobacter sp. strain H01-N on hexadecanol: physiological and ultrastructural characteristics, J. Bacteriol., 162:162.

    Google Scholar 

  • Stephenson, T., 1987, Acinetobacter: its role in biological phosphate removal, in “Biological Phosphate Removal from Wastewaters,” p. 313, R. Ramadori, ed., Pergamon Press, Oxford.

    Google Scholar 

  • Stewart, J.E., and Kallio, R.E., 1959, Bacterial hydrocarbon oxidation. II Ester formation from alkanes, J. Bacteriol., 78:726.

    CAS  PubMed  Google Scholar 

  • Streichan, M., Golecki, J.R., and Schon, G., 1990, Polyphosphate removal from sewage plants with different processes for biological phosphorus removal, FEMS Microbiol. Ecol., 73:113.

    Article  CAS  Google Scholar 

  • Suresh, N., Warburg, R., Timmerman, M., Wells, J., Coccia, M., Roberts, M.F., and Halvorson, H.O., 1985, New strategies for the isolation of microorganisms for phosphate accumulation, Water Sci. Tech., 17:99.

    CAS  Google Scholar 

  • Suresh, N., Roberts, M.F., Coccia, M., Chikarmane, H.M., and Halvorson, H.O., 1986. Cadmium-induced loss of surface polyphosphate in Acinetobacter lwoffi, FEMS Microbiol. Lett., 36:91.

    Article  CAS  Google Scholar 

  • Tal, S., and Okon, Y., 1985, Production of the reserve material, poly-β-hydroxybutyrate and its function in Azospirillum brasiliense, Can. J. Microbiol., 31:608.

    Article  CAS  Google Scholar 

  • Tempest, D.W., 1969, Quantitative relationship between inorganic cations and anionic polymers in growing bacteria, in “Microbial Growth, 19th Symp. Soc. Gen. Microbiol.,” p.87, P.M. Meadow and S.J. Pirtm, eds., Cambridge University Press, Cambridge.

    Google Scholar 

  • T’Seyen, J., Malnou, D., Block, J.C., and Faup, G., 1985, Polyphosphate kinase activity during phosphate uptake by bacteria, Water Sci. Tech. 17:43.

    Google Scholar 

  • Van Groenestijn, J.W., Deinema, M.M., and Zehnder, A.J.B., 1987, ATP production from polyphosphate in Acinetobacter strain 210A, Arch. Microbiol., 148:14.

    Article  Google Scholar 

  • Van Groenestijn, J.W., Vlekke, G.F.M., Anink, D.M.E., Deinema, M.M., and Zehnder, A.J.B., 1988, Role of cations in the accumulation and release of phosphate by Acinetobacter strain 210A, Appl. Environ. Microbiol., 54:2894.

    PubMed  Google Scholar 

  • Van Groenestijn, J.W., Bentvelsen, M.M.A., Deinema, M.M., and Zehnder, A.J.B., 1989a, Polyphosphate-degrading enzymes in Acinetobacter spp. and activated sludge, Appl. Environ. Microbiol., 55:219.

    PubMed  Google Scholar 

  • Van Groenestijn, J.W., Zuidena, M., Van de Worp, J.J.M., Deinema, M.M., and Zehnder, A.J.B., 1989b, Influence of environmental parameters on polyphosphate accumulation in Acinetobacter sp., Ant. v. Leeuw. J. Microbiol., 55:67.

    Article  Google Scholar 

  • Vasiliadis, G., Duncan, A., Bayly, R.C., and May, J.W., 1990, Polyphosphate production by strains of Acinetobacter, FEMS Microbiol. Lett., 70:37.

    Article  Google Scholar 

  • Wentzel, M.C., Lotter, L.H., Loewenthal, R.E., and Marais. Gv.R., 1986, Metabolic behaviour of Acinetobacter spp. in enhanced biological phosphorus removal. A biochemical model, Water SA, 12:209.

    CAS  Google Scholar 

  • Wentzel, M.C., Loewenthal, R.E., Ekama, G.A., and Marais, G.V.R., 1988, Enhanced polyphosphate organism cultures in activated sludge systems-Part I Enhanced culture development, Water SA, 14:141.

    Google Scholar 

  • Wilkinson, J.F., 1959, The problem of energy-storage compounds in bacteria, Exp. Cell Res., Suppl. 7:111.

    Article  Google Scholar 

  • Wood, H.G., and Clark, J.E., 1988, Aspects of inorganic polyphosphates, Ann. Rev. Biochem., 57:235.

    Article  CAS  PubMed  Google Scholar 

  • Yall, I., Bangwan, W.H., Knudsen, C. and Sinclair, N.A., 1970, Biological uptake of phosphate by activated sludge, Appl. Microbiol., 20:145.

    CAS  PubMed  Google Scholar 

  • Ye, Q., Ohtake, H., and Toda, K., 1988, Phosphorus removal by pure and mixed cultures of microorganisms, J. Ferment. Tech., 66:207.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fixter, L.M., Sherwani, M.K. (1991). Energy Reserves in Acinetobacter . In: Towner, K.J., Bergogne-Bérézin, E., Fewson, C.A. (eds) The Biology of Acinetobacter . Federation of European Microbiological Societies Symposium Series, vol 57. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3553-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3553-3_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3555-7

  • Online ISBN: 978-1-4899-3553-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics