Skip to main content

A Molecular View of Primate Supraordinal Relationships from the Analysis of Both Nucleotide and Amino Acid Sequences

  • Chapter
Primates and Their Relatives in Phylogenetic Perspective

Abstract

The fossil record suggests that the orders of eutherian mammals arose in a burst of adaptive radiation at the dawn of the Cenozoic (Savage and Russell, 1983). Possibly because of the apparent bushlike pattern of this radiation, establishing the course of phylogenetic branching that led to the orders and suborders of eutherian mammals has proven difficult. Although some regard this radiation as an almost simultaneous emergence of major clades (Simpson, 1978), most feel that such phylogenies are not actually bushlike (Gingerich, 1985; Novacek, 1990), although several splitting events may be close enough in time and in character to represent a considerable challenge for molecular and morphological analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adkins, R. M., and Honeycutt, R. L. 1991. Molecular phylogeny of the superorder Archonta. Proc. Natl. Acad. Sci. USA 88:10317–10321.

    Article  PubMed  CAS  Google Scholar 

  • Ammerman, L. K., and Hillis, D. M. 1992. A molecular test of bat relationships: Monophyly or diphyly? Syst. Biol. 41:222–232.

    Google Scholar 

  • Bailey, W. J., Slightom, J. L., and Goodman, M. 1992. Rejection of the “flying primate” hypothesisby phylogenetic evidence from the e-globin gene. Science 256:86–89.

    Article  PubMed  CAS  Google Scholar 

  • Baker, R. J., Honeycutt, R. L., and Van Den Bussche, R. A. 1991a. Examination of monophyly of bats: Restriction map of the ribosomal DNA cistron. Bull. Am. Mus. Nat. Hist. 206:42–53.

    Google Scholar 

  • Baker, R. J., Novacek, M. J., and Simmons, N. B. 1991b. On the monophyly of bats. Syst. Zool. 40:216–231.

    Article  Google Scholar 

  • Beard, K. C. 1990. Gliding behaviour and palaeoecology of the alleged primate family Par- omomyidae (Mammalia, Dermoptera). Nature 345:340–341.

    Article  Google Scholar 

  • Beintema, J. J., Rodewald, K., Braunitzer, G., Czelusniak, J., and Goodman, M. 1991. Studies on the phylogenetic position of the Ctenodactylidae (Rodentia). Mol. Biol. Evol. 8:151–154.

    PubMed  CAS  Google Scholar 

  • Borst, D. E., and Nickerson, J. M. 1988. The isolation of a gene encoding interphotoreceptor retinoid-binding protein. Exp. Eye Res. 47:825–838.

    Article  PubMed  CAS  Google Scholar 

  • Borst, D. E., Redmond, T. M., Elser, J. E., Gonda, M. A., Wiggert, B., Chader, G. J., and Nickerson, J. M. 1989. Interphotoreceptor retinoid-binding protein: Gene characterization, protein repeat structure, and its evolution. J. Biol. Chem. 264:1115–1123.

    PubMed  CAS  Google Scholar 

  • Bugge, J. 1985. Systematic value of the carotid arterial pattern in rodents, in: W. P. Luckett and J.- L. Hartenberger (eds.), Evolutionary Relationships among Rodents: A Multidisciplinary Analysis, pp. 355–379. Plenum Press, New York.

    Google Scholar 

  • Bulmer, M., Wolfe, K. H., and Sharp, P. M. 1991. Synonomous nucleotide substitution rates in mammalian genes: Implications for the molecular clock and the relationships of mammalian orders. Proc. Natl. Acad. Sci. USA 88:5974–5978.

    Article  PubMed  CAS  Google Scholar 

  • Cartmill, M., and MacPhee, R. D. E. 1980. Tupaiid affinities: The evidence of the carotid arteries and cranial skeleton, in: W. P. Luckett (ed.), Comparative Biology and Evolutionary Relationships of Tree Shrews, pp. 95–132. Plenum Press, New York.

    Chapter  Google Scholar 

  • Collins, F., and Weissman, S. 1984. The molecular genetics of human hemoglobin. Prog. Nucleic Acid Res. Mol. Biol. 31:315–439.

    Article  PubMed  CAS  Google Scholar 

  • Cronin, J. E., and Sarich, V. M. 1980. Tupaiid and Archonta phylogeny: The macromolecular evidence, in: W. P. Luckett (ed.), Comparative Biology and Evolutionary Relationships of Tree Shrews, pp. 293–312. Plenum Press, New York.

    Chapter  Google Scholar 

  • Czelusniak, J., Goodman, M., Koop, B. F., Tagle, D. A., Shoshani, J., Braunitzer, G., Kleinschmidt, T. K., de Jong, W. W., and Matsuda, G. 1990. Perspectives from amino acid and nucleotide sequences on cladistic relationships among higher taxa of Eutheria, in: H. H. Genoways (ed.), Current Mammalogy, Vol. 2, pp. 545–572. Plenum Press, New York.

    Google Scholar 

  • Easteal, S. 1990. The pattern of mammalian evolution and the relative rate of molecular evolution. Genetics 124:165–173.

    PubMed  CAS  Google Scholar 

  • Fong, S.-L., Fong, W.-B., Morris, T. A., Kedzie, K. M., and Bridges, C. D. B. 1990. Characterization and comparative structural features of the gene for human interstitial retinol-binding protein.J Biol. Chem. 265:3648–3653.

    PubMed  CAS  Google Scholar 

  • George, W. 1985. Reproductive and chromosomal characters of ctenodactylids as a key to their evolutionary relationships, in: W. P. Luckett and J.-L. Hartenberger (eds.), Evolutionary Relationships among Rodents: A Multidisciplinary Analysis, pp. 453–474. Plenum Press, New York.

    Google Scholar 

  • Gingerich, P. D. 1985. South American mammals in the Paleocene of North America, in: F. G. Stehli and S. D. Webb (eds.), The Great American Biotic Interchange, pp. 123–135. Plenum Press, New York.

    Chapter  Google Scholar 

  • Goodman, M., Koop, B. F., Czelusniak, J., Weiss, M. L., and Slightom, J. L. 1984. The ?-globin gene: Its long evolutionary history in the ß-globin gene family of mammals. J. Mol. Biol. 180:803–823.

    Article  PubMed  CAS  Google Scholar 

  • Gregory, W. K. 1910. The orders of mammals. Bull. Am. Mus. Nat. Hist. 27:1–524.

    Google Scholar 

  • Gyllensten, U. B., and Erlich, H. A. 1988. Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc. Natl. Acad. Sci. USA 85:7652–7656.

    Article  PubMed  CAS  Google Scholar 

  • Hardison, R. C. 1983. The nucleotide sequence of the rabbit embryonic globin gene ß4. J. Biol. Chem. 258:8739–8744.

    PubMed  CAS  Google Scholar 

  • Harris, S., Thackeray, J. R., Jeffreys, A. J., and Weiss, M. L. 1986. Nucleotide sequence analysis of the lemur ß-globin gene family: Evidence for major rate fluctuations in globin polypeptide evolution. Mol. Biol. Evol. 3:465–484.

    PubMed  CAS  Google Scholar 

  • Hill, W. C. O. 1955. Primates, Vol. 2. Wiley-Interscience, New York.

    Google Scholar 

  • Jukes, T. H., and Cantor, C. R. 1969. Evolution of protein molecules, in: H. N. Munro (ed.), Mammalian Protein Metabolism, Vol. 2, pp. 21–123. Academic Press, New York.

    Google Scholar 

  • Kay, R. F., Thorington, R. W., Jr., and Houde, P. 1990. Eocene plesiadapiform shows affinities with flying lemurs not primates. Nature 345:342–344.

    Article  Google Scholar 

  • Kluge, A. G. 1989. A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Syst. Zool. 38:7–25.

    Article  Google Scholar 

  • Koop, B. F., and Goodman, M. 1988. Evolutionary and developmental aspects of two hemoglobin ß-chain genes (∈M and ßM) of opossum. Proc. Natl. Acad. Sci. USA 85:3893–3897.

    Article  PubMed  CAS  Google Scholar 

  • Koop, B. F., Miyamoto, M. M., Embury, J. E., Goodman, M., Czelusniak, J., and Slightom, J. L. 1986. Nucleotide sequence and evolution of the orangutan e-globin gene region and surrounding Alu repeats.J Mol. Evol. 24:94–102.

    Article  PubMed  CAS  Google Scholar 

  • Koop, B. F., Sieminiak, D., Slightom, J. L., Goodman, M., Dunbar, J., Wright, P. L., and Simons, E. L. 1989. Tarsius 8- and ß-globin genes: Conversion, evolution, and systematic implications. J. Biol. Chem. 264:68–79.

    PubMed  CAS  Google Scholar 

  • Li, C.-K., and Ting, S.-Y. 1985. Possible phylogenetic relationships: Eurymylid-rodent and mimotonid—lagomorph, in: W. P. Luckett and J.-L. Hartenberger (eds.), Evolutionary Relationships among Rodents: A Multidisciplinary Analysis, pp. 35–58. Plenum Press, New York.

    Google Scholar 

  • Li, W.-H., Gouy, M., Sharp, P. M., O’Huigan, C., and Yeng, Y.-W. 1990. Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora and molecular clocks. Proc. Natl. Acad. Sci. USA 87:6703–6707.

    Article  PubMed  CAS  Google Scholar 

  • Linnaeus, C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis, Tomus I, editio decima, reformata, pp. 18–47. Holmiae, Impensis Direct. Laurentii Salvii, Stockholm.

    Google Scholar 

  • Luckett, W. P. 1980. The use of reproductive and developmental features in assessing tupaiid affinities, in: W. P. Luckett (ed.), Comparative Biology and Evolutionary Relationships of Tree Shrews, pp. 245–266. Plenum Press, New York.

    Chapter  Google Scholar 

  • Luckett, W. P. 1985. Superordinal and intraordinal affinities of rodents: Developmental evidence from dentition and placentation, in: W. P. Luckett and J.-L. Hartenberger (eds.), Evolutionary Relationships among Rodents: A Multidisciplinary Analysis, pp. 227–276. Plenum Press, New York.

    Google Scholar 

  • Luckett, W. P., and Hartenberger, J.-L. (eds.) 1985. Evolutionary Relationships among Rodents: A Multidisciplinary Analysis. Plenum Press, New York.

    Google Scholar 

  • McKenna, M. C. 1975. Toward a phylogenetic classification of the Mammalia, in: W. P. Luckett and F. S. Szalay (eds.), Phylogeny of the Primates: A Multidisciplinary Approach, pp. 21–46. Plenum Press, New York.

    Chapter  Google Scholar 

  • Martin, R. D. 1990. Primate Origins and Evolution: A Phylogenetic Reconstruction. Chapman & Hall, London.

    Google Scholar 

  • Mayr, E. 1986. Uncertainty in science: Is the giant panda a bear or a raccoon? Nature 323:769–771.

    Article  PubMed  CAS  Google Scholar 

  • Mindell, D. P., Dick, C. W., and Baker, R. J. 1991. Phylogenetic relationships among megabats, microbats, and primates. Proc. Natl. Acad. Sci. USA 88:10322–10326.

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto, M. M., and Cracraft, J. 1991. Phylogenetic inference, DNA sequence analysis, and the future of molecular systematics, in: M. M. Miyamoto and J. Cracraft (eds.), Phylogenetic Analysis of DNA Sequences, pp. 3–17. Oxford University Press, London.

    Google Scholar 

  • Miyamoto, M. M., and Goodman, M. 1986. Biomolecular systematics of eutherian mammals: Phylogenetic patterns and classification. Syst. Zool. 35:230–240.

    Article  Google Scholar 

  • Novacek, M. J. 1980. Cranioskeletal features in tupaiids and selected eutherians as phylogenetic evidence, in: W. P. Luckett (ed.), Comparative Biology and Evolutionary Relationships of Tree Shrews, pp. 35–93. Plenum Press, New York.

    Chapter  Google Scholar 

  • Novacek, M. J. 1985a. Cranial evidence for rodent affinities, in: W. P. Luckett and J.-L. Hartenberger (eds.), Evolutionary Relationships among Rodents, pp. 59–81. Plenum Press, New York.

    Google Scholar 

  • Novacek, M. J. 1985b. Evidence for echolocation in the oldest known bat. Nature 315:140–141.

    Article  PubMed  CAS  Google Scholar 

  • Novacek, M. J. 1986. The skull of leptictid insectivorans and the higher-level classification of eutherian mammals. Bull. Am. Mus. Nat. Hist. 183:1–111.

    Google Scholar 

  • Novacek, M. J. 1990. Morphology, paleontology, and the higher clades of mammals, in: H. H. Genoways (ed.), Current Mammalogy, Vol. 2, pp. 507–543. Plenum Press, New York.

    Google Scholar 

  • Novacek, M. J., and Wyss, A. R. 1986. Higher-level relationships of the recent eutherian orders: Morphological evidence. Cladistics 2:257–287.

    Article  Google Scholar 

  • O’Brien, S. J., Nash, W. G., Wildt, D. E., Bush, M. E., and Benveniste, R. E. 1985. A molecular solution to the riddle of the giant panda’s phylogeny. Nature 317:140–144.

    Article  PubMed  Google Scholar 

  • Penny, D., Foulds, L. R., and Hendy, M. D. 1982. Testing the theory of evolution by comparing phylogenetic trees constructed from five different protein sequences. Nature 297:197–200.

    Article  PubMed  CAS  Google Scholar 

  • Penny, D., Hendy, M. D., and Steel, M. A. 1991. Testing the theory of descent, in: M. M. Miyamoto and J. Cracraft (eds.), Phylogenetic Analysis of DNA Sequences, pp. 155–183. Oxford University Press, London.

    Google Scholar 

  • Pettigrew, J. D. 1986. Flying primates? Megabats have the advanced pathway from eye to midbrain. Science 231:1304–1306.

    Article  PubMed  CAS  Google Scholar 

  • Pettigrew, J. D. 1991a. Wings or brain? Convergent evolution in the origins of bats. Syst. Zool. 40:199–216.

    Article  Google Scholar 

  • Pettigrew, J. D. 1991b. A fruitful, wrong hypothesis? Response to Baker, Novacek, and Simmons. Syst. Zool. 40:231–239.

    Article  Google Scholar 

  • Pettigrew, J. D., Jamieson, B. G. M., Robson, S. K., Hall, L. S., McAnally, K. L, and Cooper, H. M. 1989. Phylogenetic relations between microbats, megabats and primates (Mammalia: Chirop-tera and Primates). Philos. Trans. R. Soc. London Ser. B 325:489–559.

    Article  CAS  Google Scholar 

  • Prager, E. M., and Wilson, A. C. 1988. Ancient origin of lactalbumin from lysozyme: Analysis of DNA and amino acid sequences.J Mol. Evol. 27:326–335.

    Article  PubMed  CAS  Google Scholar 

  • Saiki, R. K., Gelfand, D. H., Stoeffel, S., Scharf, S. J., Jiguchi, R., Horn, G. T., Mullis, K. B., and Erlich, H. A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491.

    Article  PubMed  CAS  Google Scholar 

  • Saitou, N., and Nei, M. 1987. The neighbour-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425.

    PubMed  CAS  Google Scholar 

  • Sarich, V. M. 1973. The giant panda is a bear. Nature 245:218–220.

    Article  Google Scholar 

  • Savage, D. E., and Russell, D. E. 1983. Mammalian Paleofaunas of the World. Addison-Wesley, Reading.

    Google Scholar 

  • Shapiro, S. G., Schon, E. A., Townes, T. M., and Lingrell, J. B. 1983. Sequence and linkage of the goat ∈1 and ∈11 ß-globin genes. J. Mol. Biol. 169:31–52.

    Article  PubMed  CAS  Google Scholar 

  • Simmons, N. B., Novacek, M. J., and Baker, R.J. 1991. Approaches, methods, and the future of the chiropteran monophyly controversy: A reply to J. D. Pettigrew. Syst. Zool. 40:239–243.

    Article  Google Scholar 

  • Simpson, G. G. 1945. The principles of classification and a classification of mammals. Bull. Am. Mus. Nat. Hist. 85:1–350.

    Google Scholar 

  • Simpson, G. G. 1978. Early mammals in South America: Fact, controversy and mystery. Proc. Am. Philos. Soc. 122:318–328.

    Google Scholar 

  • Smith, F., and Waterman, M. S. 1981. Identification of common molecular subsequences. J. Mol. Biol. 147:195–197.

    Article  PubMed  CAS  Google Scholar 

  • Sneath, P. H. A. and Sokal, R. R. 1973. Numerical Taxonomy. Freeman, San Francisco.

    Google Scholar 

  • Stanhope, M. J., Czelusniak, J., Si, J.-S., Nickerson, J., and Goodman, M. 1992. A molecular perspective on mammalian evolution from the gene encoding interphotoreceptor retinoid binding protein, with convincing evidence for bat monophyly. Mol. Phyl. Evol. 1:148–160.

    Article  CAS  Google Scholar 

  • Swofford, D. L., and Olsen, G.J. 1990. Phylogeny reconstruction, in: D. M. Hillis and C. Moritz (eds.), Molecular Systematics, pp. 411–515. Sinauer Assoc, Sunderland.

    Google Scholar 

  • Szalay, F. S. 1977. Phylogenetic relationships and a classification of the eutherian Mammalia, in: M. K. Hecht, P. C. Goody, and B. M. Hecht (eds.), Major Patterns in Vertebrate Evolution, pp. 315–374. Plenum Press, New York.

    Chapter  Google Scholar 

  • Tagle, D. A., Koop, B. F., Goodman, M., Slightom, J. L., Hess, D. L., and Jones, R. T. 1988. Embryonic e- and 7-globin genes of a prosimian primate (Galago crassicaudatus): Nucleotide and amino acid sequences, developmental regulation, and phylogenetic footprints. J. Mol. Biol. 203:439–455.

    Article  PubMed  CAS  Google Scholar 

  • Templeton, A. R. 1992. Human origins and analysis of mitochondrial DNA sequences. Science 255:737.

    Article  PubMed  CAS  Google Scholar 

  • Vigilant, L., Stoneking, M., Harpending, H., Hawkes, K., and Wilson, A. C. 1991. African populations and the evolution of human mitochondrial DNA. Science 253:1503–1507.

    Article  PubMed  CAS  Google Scholar 

  • Wible, J. R., and Covert, H. H. 1987. Primates: Cladistic diagnosis and relationships. J. Hum. Evol. 16:1–22.

    Article  Google Scholar 

  • Williams, S. A., and Goodman, M. 1989. A statistical test that supports a human/chimpanzee clade based on noncoding DNA sequence data. Mol. Biol. Evol. 6:325–330.

    PubMed  CAS  Google Scholar 

  • Wood, A. E. 1985. The relationships, origin and dispersal of the hystricognathous rodents, in: W. P. Luckett and J.-L. Hartenberger (eds.), Evolutionary Relationships among Rodents: A Multi-disciplinary Analysis, pp. 475–513. Plenum Press, New York.

    Google Scholar 

  • Wu, C.-L, and Li, W-H. 1985. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc. Natl. Acad. Sci. USA 82:1741–1745.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stanhope, M.J. et al. (1993). A Molecular View of Primate Supraordinal Relationships from the Analysis of Both Nucleotide and Amino Acid Sequences. In: MacPhee, R.D.E. (eds) Primates and Their Relatives in Phylogenetic Perspective. Advances in Primatology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2388-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2388-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2390-5

  • Online ISBN: 978-1-4899-2388-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics