Skip to main content

Abstract

Much of the current interest in the ac magnetic susceptibility of dilute magnetic systems, and its variation with static applied magnetic field, was initiated by the series of measurements performed nearly two decades ago by Cannella and Mydosh1 on the AuFe system. Such measurements, carried out at fairly low frequencies (~150 Hz) and driving fields (~5 Oe), revealed the presence of a very sharp cusp in a plot of the ac susceptibility against temperature (near 10 K for a 1 at.% Fe sample) which was rapidly smeared into a rather uninteresting broad maximum by quite modest dc magnetic fields (Ha ≧ 2−300 Oe) applied in a direction parallel to the ac driving field. The principal reason that such a result generated wide interest was because it revealed, for the first time in this type of system, a sharp anomaly in a response function (magnetic, thermal, electrical, etc.) invariably regarded by experimentalists as a signal of a potential phase transition. Indeed, the sharpness of this cusp in the zero field ac magnetic susceptibility (χ(H=O,T)) coupled with the relationship between the latter and the derivatives of the Gibb’s function (G)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. V. Cannella and J. A. Mydosh, Phys. Rev. B6:4220 (1972).

    ADS  Google Scholar 

  2. K. Binder and A. P. Young, Rev. Mod. Phys. 58:801 (1986).

    Article  ADS  Google Scholar 

  3. A. H. Morrish, “The Physical Principles of Magnetism”, Wiley, New York (1965).

    Google Scholar 

  4. M. A. Ruderman and C. Kittel, Phys. Rev. 96:99 (1954);.

    Article  ADS  Google Scholar 

  5. K. Yosida, Phys. Rev. 106:893 (1957);.

    Article  ADS  Google Scholar 

  6. T. Kasuya, Prog. Theor. Phys. (Kyoto) 16:45 (1956).

    Article  ADS  MATH  Google Scholar 

  7. R. M. Roshko and G. Williams, J. Phys. F: Met. Phys. 14:703 (1984).

    Article  ADS  Google Scholar 

  8. T. Kaneyoshi, J. Phys. C: Solid State Phys. 8:3415 (1975).

    Article  ADS  Google Scholar 

  9. B. W. Southern, J. Phys. C: Solid State Phys. 9:4011 (1976).

    Article  ADS  Google Scholar 

  10. D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35:1792 (1975).

    Article  ADS  Google Scholar 

  11. D. M. Cragg and D. Sherrington, Phys. Rev. Lett. 49:1190 (1982).

    Article  ADS  Google Scholar 

  12. D. J. Kim and B. B. Schwartz, Phys. Rev. Lett. 20:201 (1968).

    Article  ADS  Google Scholar 

  13. J. Crangle, Phil. Mag. 5:335 (1960);.

    Article  ADS  Google Scholar 

  14. R. M. Bozorth, P. A. Wolff, D. D. Davis, V.B. Compton, and J.H. Wernick, Phys. Rev. 122:1157 (1961).

    Article  ADS  Google Scholar 

  15. G. J. Nieuwenhuys, Phys. Lett. 67A:237 (1978).

    ADS  Google Scholar 

  16. R. P. Peters, Ch. Buchal, M. Kubota, R. M. Mueller, and F. Pobell, Phys. Rev. Lett. 11:1108 (1984).

    Article  ADS  Google Scholar 

  17. T. Moriya, Proc. Int. School Phys. “Enrico Fermi” (Course XXXVII), Academic Press, New York (1967).

    Google Scholar 

  18. I. Maartense, Rev. Sci. Instrum. 41:657 (1970).

    Article  ADS  Google Scholar 

  19. J. A. Osborn, Phys. Rev. 67:351 (1945).

    Article  ADS  Google Scholar 

  20. J. D. Patterson, “Introduction to the Theory of Solid State Physics”, Addison-Wesley, Reading (1971).

    Google Scholar 

  21. P. D. Long and R. E. Turner, J. Phys. C: Solid State Phys. S3:127 (1970).

    Article  ADS  Google Scholar 

  22. S. Chikazumi, “Physics of Magnetism”, Wiley, New York (1964).

    Google Scholar 

  23. H. E. Stanley, “Introduction to Phase Transitions and Critical Phenomena”, Clarendon Press, Oxford (1971).

    Google Scholar 

  24. B. Widom, J. Chem. Phys. 43:3898 (1965).

    Article  ADS  Google Scholar 

  25. S. C. Ho, I. Maartense, and G. Williams, J. Phys. F: Met. Phys. 11:699 (1981).

    Article  ADS  Google Scholar 

  26. B. Westwanski and B. Fugiel, Phys. Rev. B43:3637 (1991).

    ADS  Google Scholar 

  27. A. P. Malozemoff and Y. Imry, J. Mag. Mag. Mat. 31–34:1425 (1983).

    Article  Google Scholar 

  28. This suggestion was made to us by B.W. Southern.

    Google Scholar 

  29. H. P. Kunkel, R. M. Roshko, and G. Williams, Phys. Rev. B37:5880 (1988).

    ADS  Google Scholar 

  30. J. S. Kouvel and M. E. Fisher, Phys. Rev. 136A:1626 (1964).

    Article  ADS  Google Scholar 

  31. H. Ma, H. P. Kunkel, and G. Williams, J. Phys: Condens. Matter 3:5563 (1991).

    Article  ADS  Google Scholar 

  32. L. C. LeGuillou and J. Zinn-Justin, Phys. Rev. B31:3976 (1981).

    MathSciNet  Google Scholar 

  33. P. Gaunt, S. C. Ho, G. Williams, and R. W. Cochrane, Phys. Rev. B23:251 (1981).

    ADS  Google Scholar 

  34. Z. Wang, Ph.D. Thesis, University of Manitoba (1991).

    Google Scholar 

  35. H. P. Kunkel and G. Williams, J. Phys. F: Met. Phys. 18:1271 (1988).

    Article  ADS  Google Scholar 

  36. S. C. Ho, I. Maartense, and G. Williams, J. Phys. F: Met. Phys. 11:1107 (1981).

    Article  ADS  Google Scholar 

  37. K. Kornik, H. P. Kunkel, R. M. Roshko, and G. Williams, Solid State Commun. 76:993 (1990).

    Article  ADS  Google Scholar 

  38. H. P. Kunkel, R. M. Roshko, W. Ruan, and G. Williams, Phil. Mag. B64:153 (1991).

    Article  ADS  Google Scholar 

  39. S. Kaul, J. Mag. Mag. Mat. 53:5 (1985).

    Article  ADS  Google Scholar 

  40. M. Fahnle, J. Mag. Mag. Mat. 65:1 (1987).

    Article  ADS  Google Scholar 

  41. I. Yeung, R. M. Roshko, and G. Williams, Phys. Rev. B34:3456 (1986).

    ADS  Google Scholar 

  42. E. C. Zastre, R. M. Roshko, and G. Williams, J. Appl. Phys. 57:3447 (1985).

    Article  ADS  Google Scholar 

  43. I. Yeung, R. M. Roshko, and G. Williams, J. Mag. Mag. Mat. 68:39 (1987);.

    Article  ADS  Google Scholar 

  44. R. M. Roshko, W. Ruan, and G. Williams, Phys. Rev. B37:9806 (1988).

    ADS  Google Scholar 

  45. J. Chalupa, Solid State Commun. 22:315 (1977);.

    Article  ADS  Google Scholar 

  46. M. Suzuki, Prog. Theor. Phys. 58:1151 (1977).

    Article  ADS  Google Scholar 

  47. R. M. Roshko and G. Williams, J. Mag. Mag. Mat. 50:31 (1985).

    Article  Google Scholar 

  48. E. C. Zastre, R. M. Roshko, and G. Williams, Phys. Rev. B32:7597 (1985).

    ADS  Google Scholar 

  49. D. M. Cragg, D. Sherrington, and M. Gabay, Phys. Rev. Lett. 49:158 (1982);.

    Article  ADS  Google Scholar 

  50. M. A. Moore and A. J. Bray, J. Phys. C: Solid State Phys. 15:L301 (1982).

    Article  ADS  Google Scholar 

  51. P. Nordblad, P. Svedlindh, L. Lundgren, and L. Sandlund, Phys. Rev. B33.645 (1986);.

    ADS  Google Scholar 

  52. L. Lundgren, P. Nordblad, and P. Svedlindh, Phys. Rev. B34:8164 (1986).

    ADS  Google Scholar 

  53. M. Alba, M. Ocio, and J. Hamman, Europhys. Lett. 2:45 (1986).

    Article  ADS  Google Scholar 

  54. S. Geschwind, D. A. Huse, and G. E. Devlin, Phys. Rev. B41:4854 (1990).

    ADS  Google Scholar 

  55. B. R. Coles and G. Williams, J. Phys. F: Met. Phys. 18:1279 (1988).

    Article  ADS  Google Scholar 

  56. H. Bouchiat, J. Phys. (Paris), 47:71 (1986);.

    Article  Google Scholar 

  57. L. P. Levy, Phys. Rev. B38:4963 (1988).

    ADS  Google Scholar 

  58. J. J. Prejean, E. Carré, P. Beauvillain, and J. P. Renard, J. Phys. (Paris), C8:995 (1988).

    Google Scholar 

  59. J. J. Smit, G. J. Nieuwenhuys, and L. J. de Jongh, Solid State Commun. 30:243 (1979).

    Article  ADS  Google Scholar 

  60. J. R. L. de Almeida and D. J. Thouless, J. Phys. A11:983 (1978).

    ADS  Google Scholar 

  61. G. Parisi, Phys. Rev. Lett. 43:1754 (1979).

    Article  ADS  Google Scholar 

  62. G. Parisi, J. Phys. A13:1101 (1980).

    ADS  Google Scholar 

  63. G. Parisi, J. Phys. A13:1887 (1980).

    MathSciNet  ADS  Google Scholar 

  64. G. Parisi, J. Phys. A13.-L115 (1980).

    ADS  Google Scholar 

  65. G. Parisi, Phys. Rev. Lett. 50:1946 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  66. M. Gabay and G. Toulouse, Phys. Rev. Lett. 47:201 (1981).

    Article  ADS  Google Scholar 

  67. G. Williams, Can. J. Phys. 65:1251 (1987).

    Article  ADS  Google Scholar 

  68. G. Kotliar and H. Sompolinsky, Phys. Rev. Lett. 53:1751 (1984).

    Article  ADS  Google Scholar 

  69. A. Fert, N. de Courtenay, and I. A. Campbell, J. Appl. Phys. 57:3398 (1985).

    Article  ADS  Google Scholar 

  70. K. Kornik, M.Sc. Thesis, University of Manitoba (1989).

    Google Scholar 

  71. K. Kornik, R. M. Roshko, and G. Williams, J. Mag. Mag. Mat. 81:323 (1989).

    Article  ADS  Google Scholar 

  72. S. C. Ho, I. Maartense, and G. Williams, J. Appl. Phys. 53:2235 (1982).

    Article  ADS  Google Scholar 

  73. H. P. Kunkel and G. Williams, J. Mag. Mag. Mat. 75:98 (1988).

    Article  ADS  Google Scholar 

  74. M. Katori and M. Suzuki, Prog. Theor. Phys. 74:1175 (1985).

    Article  ADS  Google Scholar 

  75. D. H. Ryan, J. O. Ström-Olsen, R. Provencher, and M. Townsend, J. Appl. Phys. 64:5787 (1988).

    Article  ADS  Google Scholar 

  76. S. B. Roy and B. R. Coles, Phys. Rev. B39:9360 (1989).

    ADS  Google Scholar 

  77. S. J. Kennedy, A. P. Murani, J. K. Cockcroft, S. B. Roy, and B. R. Coles, J. Phys: Condens. Matter 1:629 (1989).

    Article  ADS  Google Scholar 

  78. Very recent measurements on undoped CeFe2 (H.P. Kunkel, M.S. Westmore, and G. Williams, Phil. Mag. B (in press)) indicate that a(T) displays a single peak around T c, with no second anomaly at lower temperature.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Williams, G. (1991). AC Susceptibility of Dilute Magnetic Systems. In: Hein, R.A., Francavilla, T.L., Liebenberg, D.H. (eds) Magnetic Susceptibility of Superconductors and Other Spin Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2379-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2379-0_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2381-3

  • Online ISBN: 978-1-4899-2379-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics