Skip to main content

Recovery of Vacuum Spark Gaps

  • Chapter
Gas Discharge Closing Switches

Part of the book series: Advances in Pulsed Power Technology ((APUT,volume 2))

  • 506 Accesses

Abstract

Vacuum spark gaps may be divided into three main types, as shown in Fig. 4–16 and described in Table 4-III. A triggered vacuum gap (TVG) usually has the trigger built into the cathode. In power system applications TVGs may have triggers in both electrodes or a trigger separate from either electrode. This could include an external laser trigger. A vacuum interrupter (VI) usually operates by mechanically drawing an arc, but could be constructed with a separate trigger in order to operate as a TVG when desired. A metal plasma arc switch (MPAS) is able to turn off when desired without requiring additional external circuitry or waiting for a natural current zero.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bauer, G.J., and Holmes, R., 1977, Deionization of an Interrupted Vacuum Arc, Proc. Instn. Electr. Eng., 124:266.

    Article  Google Scholar 

  • Behrens, F-W., and Erk, A., 1985, Interrupting Capacity of Vacuum Interrupters as a Function of Contact Geometry, IEEE Trans. Comp. Hybrids & Manuf. Techn., CHMT-8:80.

    Article  Google Scholar 

  • Bhasavanich, D., Frost, L.S., Gorman, J.G., Kimblin, C.W., and Greenwood, A.N., 1982, Arc Plasma Decay Following the Forced Interruption of DC Vacuum Arcs, IEEE Int. Conf. Plasma Sci.:93.

    Google Scholar 

  • Böhme, H., and Fink, H., 1982, Extinction of Arcs after Breakdowns in Vacuum Circuit-Breakers, Wiss. A. Tech. Univ. Dresden, 31:141.

    Google Scholar 

  • Boxman, R.L., and Goldsmith, S., 1981, The Interaction between Plasma and Macroparticles in a Multi-Cathode-Spot Vacuum Arc, J. Appl. Phys., 52:151.

    Article  Google Scholar 

  • Boxman, R.L., Goldsmith, S., Izraeli, I, and Shalev, S., 1983, A Model of the Multicathode-Spot Vacuum Arc, IEEE Trans. Plasma Sci., PS-11:138.

    Article  Google Scholar 

  • Childs, S.E., Greenwood, A.N., and Sullivan, J.S., 1983, Events Associated with Zero Current Passage During the Rapid Commutation of a Vacuum Arc, IEEE Trans. Plasma Sci., PS-11:181.

    Article  Google Scholar 

  • Christov, S.G., 1978, Recent Test and New Applications of the Unified Theory of Electron Emission, Surface Sci., 70:32.

    Article  Google Scholar 

  • Cope, D.B. and Mongeau, P.P., 1983, Magnetically Aided Metal Vapor Vacuum Arc Switching, Proc. 4th IEEE Pulsed Power Conf., 766.

    Google Scholar 

  • Courts, A.L., Vithayathil, J.J., Hingorani, N.G., Porter, J.W., Gorman, J.G., and Kimblin, C.W., 1982, A New DC Breaker Used as Metallic Return Transfer Breaker, IEEE Trans. Power Appar. Syst., PAS-101:4112.

    Article  Google Scholar 

  • Daalder, J.E., 1981, Cathode Spots and Vacuum Arcs, Physica,104C: 91.

    Google Scholar 

  • Davis, W.D., and Miller, H.C., 1969, Analysis of the Electrode Products Emitted by DC Arcs in a Vacuum Ambient, J. Appl. Phys., 40:2212.

    Article  Google Scholar 

  • Eckhardt, G., 1975, Interpretation of Data on Cathode Erosion and Efflux from Cathode Spots of Vacuum Arcs, J. Appl. Phys., 46: 3282.

    Article  Google Scholar 

  • Emtage, P.R., Kimblin, C.W., Gorman, J.G., Holmes, F.A., Heber-lein, J.V.R., Voshall, R.E., and Slade, P.G., 1980, Interaction Between Vacuum Arcs and Transverse Magnetic Fields with Application to Current Limitation, IEEE Trans. Plasma Sci., PS-8:314.

    Article  Google Scholar 

  • Farrall, G.A., 1965, Arc Recovery in Vacuum, Proc. 7th Int. Conf. Phen. Ionized Gases (Belgrade), I:403.

    Google Scholar 

  • Farrall, G.A., 1978, Recovery of Dielectric Strength After Current Interruption in Vacuum, IEEE Trans. Plasma Sci., PS-6:360.

    Article  Google Scholar 

  • Farrall, G.A., 1980, Current Zero Phenomena, Chap. 6, in: “Vacuum Arcs”, J.M. Lafferty, ed., Wiley-Interscience, New York.

    Google Scholar 

  • Frind, G., Carroll, J.J., Goody, C.P., and Tuohy, E.J., 1982, Recovery Times of Vacuum Interrupters which have Stationary Anode Spots, IEEE Trans. Power Appar. Syst., PAS-101:775.

    Article  Google Scholar 

  • Gilmour, A.S., Jr. and Lockwood, D.L., 1975, The Interruption of Vacuum Arcs at High DC Voltages, IEEE Trans. Electron Dev.. ED-22:173.

    Article  Google Scholar 

  • Gorman, J.G., Kimblin, C.W., Voshall, R.E., Wien, R.E., and Slade, P.G., 1983, The Interaction of Vacuum Arcs with Magnetic Fields and Applications, IEEE Trans. Power Appar. Syst., PAS-102:257.

    Article  Google Scholar 

  • Hantzsche, E., 1983, The State of the Theory of Vacuum Arc Cathodes, Beitr. Plasma Phys., 23:77.

    Article  Google Scholar 

  • Jenkins, J.E., Sherman, J.C., Webster, R., and Holmes, R., 1975, Measurement of the Neutral Vapour Density Decay Following the Extinction of a High-Current Vacuum Arc Between Copper Electrodes, J. Phys. D., 8:L139.

    Article  Google Scholar 

  • Kaneko, E., Tamagawa, T., Okumura, H., and Yanabu, S., 1983, Basic Characteristics of Vacuum Arcs Subjected to a Magnetic Field Parallel to their Positive Columns, IEEE Trans. Plasma Sci., PS-11:169.

    Article  Google Scholar 

  • Kimblin, C.W., 1971a, Vacuum Arc Ion Currents and Electrode Phenomena, Proc. IEEE. 59:546.

    Article  Google Scholar 

  • Kimblin, C.W., 1971b, Dielectric Recovery and Shield-Currents in Vacuum-Arc Interrupters, IEEE Trans. Power Appar. Syst., PAS-90:1261.

    Article  Google Scholar 

  • Kimblin, C.W., 1973, Erosion and Ionization in the Cathode Spot Regions of Vacuum Arcs, J. Appl. Phys., 44:3074.

    Article  Google Scholar 

  • Kimblin, C.W., 1983, Arcing and Interruption Phenomena in AC Vacuum Switchgear and in DC Switches Subjected to Magnetic Fields, IEEE Trans. Plasma Sci., PS-11:173.

    Article  Google Scholar 

  • Kimblin, C.W., Slade, P.G., and Voshall, R.E., 1984, Interruption in Vacuum, Chap. 8, in: “Circuit Interruption”, T.E. Browne, Jr., ed., Marcel Dekker, New York.

    Google Scholar 

  • Lafferty, J.M., ed., 1980, “Vacuum Arcs”, Wiley-Interscience, New York.

    Google Scholar 

  • Li, H-q, and Wang, J-m, 1985, Research on the Recovery Processes of Vacuum Gaps after 50 Hz Sinusoidal Current Zero, IEEE Trans. Electr. Insul., EI-20:745.

    Article  Google Scholar 

  • Lins, G., 1985, Measurement of the Neutral Copper Vapor Density Around Current Zero of a 500 A Vacuum Arc Using Laser-Induced Fluorescence, IEEE Trans. Plasma Sci., PS-13:577.

    Article  Google Scholar 

  • Lunev., V.M., Ovcharenko, V.D., and Khoroshikh, V.M., 1977a, Plasma Properties of a Metal Vacuum Arc I., Sov. Phys. Tech. Phys., 22:855.

    Google Scholar 

  • Lunev, V.M., Padalka, V.G., and Khoroshikh, V.M., 1977b, Plasma Properties of a Metal Vacuum Arc. II, Sov. Phys. Tech. Phys., 22:858.

    Google Scholar 

  • Lyubimov, G.A., and Rakhovskii, V.I., 1978, The Cathode Spot of a Vacuum Arc, Sov. Phys. Usp., 21:693.

    Article  Google Scholar 

  • McDonald, C.L., Dougal, R.A., Sudarshan, T.S., and Thompson, J.E., 1984, Voltage Recovery Time of a Vacuum Switch, 16th Pow. Mod. Svmp.:91 (IEEE paper 84CH2056-0).

    Google Scholar 

  • Miller, H.C., 1972, Measurements on Particle Fluxes from DC Vacuum Arcs Subjected to Artificial Current Zeroes, J. Appl. Phys., 43:2175.

    Article  Google Scholar 

  • Miller, H.C., 1981, Constraints Imposed Upon Theories of the Vacuum Arc Cathode Region by Specific Ion Energy Measurements, J. Appl. Phys., 52:4523.

    Article  Google Scholar 

  • Miller, H.C., 1983, Discharge Modes at the Anode of a Vacuum Arc, IEEE Trans. Plasma Sci.. PS-11:122.

    Article  Google Scholar 

  • Miller, H.C., 1985, A Review of Anode Phenomena in Vacuum Arcs, IEEE Trans. Plasma Sci., PS-13:242.

    Article  Google Scholar 

  • Mitchell, G.R., 1970, High Current Vacuum Arcs, Part 1 — An Experimental Study, Proc. Instn. Electr. Eng., 117:2315.

    Article  Google Scholar 

  • Plyutto, A.A., Ryzhkov, V.N., and Kapin, A.T., 1965, High Speed Plasma Streams in Vacuum Arcs, Sov. Phys.-JETP. 20:328.

    Google Scholar 

  • Premerlani, W.J., 1982, Forced Commutation Performance of Vacuum Switches for HVDC Breaker Application, IEEE Trans. Power Appar. Syst., PAS-101:2721.

    Article  Google Scholar 

  • Rakhovskii, V.I., 1970, “Physical Bases of the Commutation of Electric Current in a Vacuum”, Chap. III:10, Nauka, Moscow; English Transi. NTIS Rpt. AD 773868, 1973.

    Google Scholar 

  • Rich, J.A., and Farrall, G.A., 1964, Vacuum Arc Recovery Phenomena, Proc. IEEE. 52:1293.

    Article  Google Scholar 

  • Rich, J.A., Goody, C.P., and Sofianek, J.C., 1981, High Power Triggerred Vacuum Gap of Rod Array Type, General Electric (Schenectady) Rpt. 81CRD321.

    Google Scholar 

  • Rylskaya, L.A., and Pertsev, A.A., 1984, Dielectric Strength of a Vacuum Interrupter after Current Interruption, Proc. XIth Int. Symp. Disch. Electr. Insul. Vac. (Berlin, GDR):267.

    Google Scholar 

  • Tuma, D.T., Chen, C.L., and Davies, D.K., 1978, Erosion Products from the Cathode Spot Region of a Copper Vacuum Arc, J. Appl. Phys., 49:3821.

    Article  Google Scholar 

  • Voshall, R.E., 1972, Current Interruption Ability of Vacuum Switches, IEEE Trans Power Appar. Syst., PAS-91:1219.

    Article  Google Scholar 

  • Yanabu, S., Homma, M., Kaneko, E., and Tamagawa, T., 1985a, Post Arc Current of Vacuum Interrupters, IEEE Trans. Power Appar. Svst., PAS-104:166.

    Article  Google Scholar 

  • Yanabu, S., Kaneko, E., Tamagawa, T., Matsumoto, K., and Homma, M., 1985b, Post-Arc Current after High-Current Interruption in Vacuum, IEEE Trans. Electr. Insul., EI-20:739.

    Article  Google Scholar 

  • Zalucki, Z., 1985, Estimation of Post-Arc Neutral Vapor Density in the Gap Volume Generated by Evaporating Macroparticles in a Diffuse Vacuum Arc, IEEE Trans. Plasma Sci., PS-13:321.

    Article  Google Scholar 

  • Zalucki, Z., and Kutzner, J., 1985, Initiation of Electrical Breakdown by Ionic Bombardment in a Vacuum Gap after Arc Extinction, IEEE Trans Plasma Sci., PS-13:315.

    Article  Google Scholar 

  • Zalucki, Z., Seidel, St., and Kutzner, J., 1968, Contribution to the Investigation of Dielectric Strength after Extinction of an Arc in Vacuum, Proc. III Int. Symp. Disch. Electr. Insul. Vac. (Paris, France):358.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miller, H.C. (1990). Recovery of Vacuum Spark Gaps. In: Schaefer, G., Kristiansen, M., Guenther, A. (eds) Gas Discharge Closing Switches. Advances in Pulsed Power Technology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2130-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2130-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2132-1

  • Online ISBN: 978-1-4899-2130-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics