Skip to main content

Multidimensional Fluorescence Microscopy: Optical Distortions in Quantitative Imaging of Biological Specimens

  • Chapter
Fluorescence Microscopy and Fluorescent Probes

Abstract

Photometric and morphometric measurement of biological microscopy specimens often poses problems due to their optical properties and those of the microscope (Fricker and White, 1992). 3-D Visualisation (White, 1995) and quantification (Sandison et al, 1995, Taylor and Wang, 1989b) of fluorescent probes in living tissue is possible by computer assisted confocal microscopy (e. g. Brackenhoff et al, 1979; Shotton, 1989; Wilson, 1990, Inoué 1995). The specimen is both the object under investigation and also a key component of this integrated imaging system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agard, D.A. and Sedat, J.W. (1983). Three dimensional architecture of a polytene nucleus. Nature 302, 676–681.

    Article  PubMed  CAS  Google Scholar 

  • Born, M. and Wolf, E. (1991), Principles of Optics, Pergamon press, Oxford.

    Google Scholar 

  • Brackenhoff, G.J., Blom, P. and Barends, P. (1979). Confocal scanning light microscopy with high aperture immersion lenses. J. Microsc. 117, 219–232.

    Article  Google Scholar 

  • Carlsson, K. (1991). Influence of specimen refractive index, detector signal integration, and non-uniform scan speed on the imaging properties in confocal microscopy. J. Microsc. 163, 167–178.

    Article  Google Scholar 

  • Carlsson, K. and Liljeborg, A. (1989). A confocal laser microscope scanner for digital recording of optical serial sections. J. Microsc. 153, 171–180.

    Article  PubMed  CAS  Google Scholar 

  • Cogswell, C. J. and Larkin, K.G. (1995). The specimen illumination path and its effect on image quality. Handbook of Biological Confocal Microscopy, Second Edition (Ed. J.B. Pawley). pp 127–138. Plenum Press, New York.

    Chapter  Google Scholar 

  • Denk, W., Strickler, J.H. and Webb, W.W. (1990). Two-photon laser scanning fluorescence microscopy. Science 248, 73–76

    Article  PubMed  CAS  Google Scholar 

  • Denk, W., Piston, D.W. and Webb, W.W. (1995). Two-photon molecular excitation in laser scanning microscopy. Handbook of Biological Confocal Microscopy, Second Edition (Ed. J.B. Pawley). pp 445–458. Plenum Press, New York.

    Chapter  Google Scholar 

  • Edwards, M.C., Smith, G.M. and Bowling, D.J.F. (1988). Guard cells extrude protons prior to stomatal opening-a study using fluorescence microscopy and pH electrodes. J. Exp. Bot. 39, 1541–1547.

    Article  Google Scholar 

  • Entwistle, A. and Noble, M. (1994). Optimising the performance of confocal point scanning laser microscopes over the full field of view. J. Microsc. 175, 238–251.

    Article  Google Scholar 

  • Fricker, M.D. and White, N.S. (1992) Wavelength considerations in confocal microscopy of botanical specimens, J. Microsc. 166(1), 29–42

    Article  Google Scholar 

  • Gahm, T. and Witte, S. (1986). Measurement of optical thickness of transparent tissue layers. J. Microsc. 141, 101–110.

    Article  PubMed  CAS  Google Scholar 

  • Gu, M. and Sheppard, C.J.R. (1995). Comparison of three dimensional imaging properties between two-photon and single photon fluorescence microscopy. J. Microsc. 177, 128–137.

    Article  Google Scholar 

  • Guilak, F. (1993), Volume and surface area measurement of viable chondrocytes in situ using geometric modelling of serial confocal sections. J. Microsc. 173(3), 245–256.

    Article  Google Scholar 

  • Hell, S., Reiner, G., Cremer, C. and Stelzer, H.K., 1993, Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index. J. Microsc. 169(3), 391–405.

    Article  Google Scholar 

  • Holmes, T.J., Bhattacharyya, S., Cooper, J.A., Hanzel, D., Krishnamurthi, V., Lin, W.C., Roysam, B., Szarowski, D.H. and Turner, J.N. (1995). Light microscopic images reconstructed by maximum likelihood deconvolution. Handbook of Biological Confocal Microscopy, Second Edition (Ed. J.B. Pawley). pp 389–402. Plenum Press, New York.

    Chapter  Google Scholar 

  • InouĂ©, S. (1986). Video Microscopy. Plenum press, New York.

    Google Scholar 

  • InouĂ©, S. (1995). Foundations of confocal scanned imaging in light microscopy. Handbook of Biological Confocal Microscopy, Second Edition (Ed. J.B. Pawley). pp 1–18. Plenum Press, New York.

    Chapter  Google Scholar 

  • InouĂ©, S. and Oldenbourg, R. (1993). Optical instruments; Microscopes. In: Handbook of Optics. Second Edition (Ed. Optical society of America). McGraw-Hill, New York.

    Google Scholar 

  • Jacobsen, H., Hanninen, P., Soini, E. and Hell, S.W. (1994). Refractive index induced aberrations in two-photon confocal fluorescence microscopy. J. Microsc. 176, 226–230.

    Article  Google Scholar 

  • Keller, H.E. (1995). Objective lenses for confocal microscopy. Handbook of Biological Confocal Microscopy, Second Edition (Ed. J.B. Pawley). pp 111–126. Plenum Press, New York.

    Chapter  Google Scholar 

  • Lacey, A.J. (1989). Light Microscopy in Biol. ogy; A Practical Approach. IRL Press, Oxford.

    Google Scholar 

  • Lucosz, W. (1966). J. Opt. Soc. Am. 56, 1463.

    Article  Google Scholar 

  • Moss, R.A. and Loomis, W.E. (1952). Absorption spectra of leaves. I. The visible spectrum. Plant Physiol. 27, 370–391.

    Article  PubMed  CAS  Google Scholar 

  • Pawley, J.B. (1995). Light paths of current commercial confocal light microscopes for biology. Handbook of Biological Confocal Microscopy, Second Edition (Ed. J.B. Pawley). pp 581–598. Plenum Press, New York.

    Google Scholar 

  • Rigaut, J.P. and Vassey, J. (1991). High resolution three-dimensional images from confocal scanning laser microscopy. Quantitative study and mathematical correction of the effects due to bleaching and fluorescence attenuation in depth. Anal. Quant. Cytol. Histol. 13, 223–232.

    PubMed  CAS  Google Scholar 

  • Sandison, D.R., Williams, R.M., Wells, K.S., Strickler, J. and Webb, W.W. (1995). Quantitative fluorescence confocal laser scanning microscopy (CLSM). Handbook of Biological Confocal Microscopy, Second Edition (Ed. J.B. Pawley). pp 39–54. Plenum Press, New York.

    Chapter  Google Scholar 

  • Shaw, P., J. (1995). Comparison of wide-field/deconvolution and confocal microscopy for 3D imaging. Handbook of Biological Confocal Microscopy, Second Edition (Ed. J.B. Pawley). pp 373–388. Plenum Press, New York.

    Chapter  Google Scholar 

  • Shotton, D.M. (1989). Review: Confocal scanning optical microscopy and its applications for biological specimens. J. Cell Sci. 94, 175–206.

    Google Scholar 

  • Tao, L. and Nicholson, C. (1995). The three dimensional point spread functions of a microscope objective in image and object space. J. Microsc. 178, 267–271.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, D., L-and Wang, Y.-L. (1989a). Fluorescent Analogues, Labelling Cells and Basic Microscopy. in: Methods in Cell Biol. ogy Vol.29. Acad. Press, London.

    Google Scholar 

  • Taylor, D., L-and Wang, Y.-L. (1989b). Quantitative Fluorescence Microscopy-Imaging and Spectroscopy. in: Methods in Cell Biol. ogy Vol.30. Acad. Press, London.

    Google Scholar 

  • Verbeek, P., W. and van Vliet, L. J. (1994). On the location of curved edges in low-pass filtered 2-D and 3-D images. IEEE Trans. Pattern Anal. Machine Vision. 16(7), 726–733.

    Article  Google Scholar 

  • Verbelen, J.P. and Stickens, D. (1994). In vivo determination of fibre orientation in plant cell walls with polarisation CSLM. J. Microsc. 177, 1–6.

    Article  Google Scholar 

  • Visser, T.D., Groen, F.C.A., Brakenhoff, G.J., 1991, Absorption and scaterring correction in fluorescence confocal microscopy. J. Microsc. 163, 189–200.

    Article  Google Scholar 

  • Visser, T.D., Oud, J.L. and Brakenhoff, G.J., 1992, Refractive index and axial distance measurements in 3-D microscopy. Optik. 90, 17–19.

    Google Scholar 

  • van Vliet, L.J. (1993). PhD thesis: Gray-Scale Measurements in Multi-Dimensional digitized Images. Delft University Press, Delft.

    Google Scholar 

  • Weyers, J.D.B. and Travis, A.J. (1981). Selection and preparation of leaf epidermis for experiments on stomatal physiology. J. Exp. Bot. 32, 837–850.

    Article  Google Scholar 

  • White, N.S. (1995). Visualisation systems for multidimensional CLSM images. Handbook of Biological Confocal Microscopy, Second Edition (Ed. J.B. Pawley). pp 211–254. Plenum Press, New York.

    Chapter  Google Scholar 

  • White, N.S., Errington, R.J., Flicker, M.D. and Wood, J.L. (1995). Aberration control in quantitative imaging of botanical specimens by multi-dimensional fluorescence microscopy. J. Microsc in press.

    Google Scholar 

  • Wilson, T. (1990). Confocal microscopy. Academic Press, London.

    Google Scholar 

  • Wilson, T. and Sheppard, C.J.R. (1984). Theory and Practice of Scanning Optical Microscopy. Acad. Press, New York.

    Google Scholar 

  • Wooley, J.T. (1971). Reflectance and transmittance of light by leaves. Plant Physiol. 47, 656–662.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

White, N.S., Errington, R.J., Fricker, M.D., Wood, J.L. (1996). Multidimensional Fluorescence Microscopy: Optical Distortions in Quantitative Imaging of Biological Specimens. In: SlavĂ­k, J. (eds) Fluorescence Microscopy and Fluorescent Probes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1866-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1866-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1868-0

  • Online ISBN: 978-1-4899-1866-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics