Skip to main content

The Effect of Lysosomal pH on Lactoferrin-Dependent Iron Uptake in Tritrichomonas foetus

  • Chapter
Fluorescence Microscopy and Fluorescent Probes

Abstract

Tritrichomonas foetus is a parasitic protozoan which causes a sexually transmitted disease of cattle. The establishment of infection depends on the ability of T. foetus to acquire iron from the host as was demonstrated in experimentally infected mice1. Most of the iron available in mucosal secretions, the environment colonised by this parasite, is rather firmly bound to host iron-binding proteins such as lactoferrin and transferrin. Trichomonads as well as other pathogens therefore evolved specific mechanisms which allow them to withdraw iron from these proteins2,3,4. It was shown recently that lactoferrin is specifically bound to the surface of T. foetus, endocytosed and transported into hydrolase containing lysosome-like organelles5. Although there is no direct evidence for release of iron within this cell compartment, the low pH in the lysosomes might provide a suitable environment for such process. Since information about the intracellular pH of protozoa is rather limited6,7 and since no data are available on the pH of the endo/lysosomal compartment in trichomonads, we attempted (1) to determine the pH of the cytoplasm and the lysosome-like organelles of T. foetus, (2) to monitor pH changes in these organelles in trichomonads treated with agents inhibiting endo/lysosomal acidification, and (3) to investigate whether a pH increase in the lysosomal-like organelles influences the iron uptake from lactoferrin by T. foetus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Kulda, M. Budilová, The effect of ferric ammonium citrate on the multiplication of Tritrichomonas foetus in the peritoneal cavity of mice, J. Protozool. 24, 51A (1977)

    Google Scholar 

  2. C.S. Voyiatzaki, K.P. Soteriadou, Identification and isolation of the Leishmania transferrin receptor, J. Biol. Chern. 267:9112–9117 (1992)

    CAS  Google Scholar 

  3. K.M. Peterson, J.F. Alderete, Iron uptake and increased intracellular enzyme activity follow host lactoferrin binding by Trichomonas vaginalis receptors, J. Exp. Med. 160:398–410 (1984)

    Article  PubMed  CAS  Google Scholar 

  4. I. Coppens, F.R. Opperdoes, P.J. Courtoy, P. Baudhuin, Receptor-mediated endocytosis in the bloodstream form of Trypanosoma brucei, J. Protozool. 34:465–473 (1987)

    PubMed  CAS  Google Scholar 

  5. A.L. Affonso, M. Benchimol, K.C. Ribeiro, U. Lins, W. de Souza, Further studies on the endocytic activity of Tritrichomonas foetus, Parasitol. Res. 80: 403–413 (1994)

    Article  PubMed  CAS  Google Scholar 

  6. L. Aubry, G. Klein, J.-L. Martiel, M. Satre, Kinetics of endosomal pH evolution in Dictyostelium discoideum amoebae, J. Cell Sci. 105: 861–866 (1993)

    PubMed  CAS  Google Scholar 

  7. R. Allen, A. Fok, Nonlysosomal vesicles (acidosomes) are involved in phagosome acidification in Paramecium, J. Cell Biol. 97: 566–570 (1983)

    Article  PubMed  CAS  Google Scholar 

  8. L. Diamond, The establishment of various trichomonads of animals and man in axenic cultures, J. Parasit. 43:488–490 (1957)

    PubMed  CAS  Google Scholar 

  9. P. Cimprich, J. Slavík, A. Kotyk, Distribution of individual cytoplasmic pH values in a population of the yeast Saccharomyces cerevisiae, FEMS Microbiol. Let. 130:245–252 (1995)

    Article  CAS  Google Scholar 

  10. D. Legrand, J. Mazurier, P. Maes, E. Rochard, J. Montreuil, G. Spik, Inhibition of the specific binding of human lactotransferrin to human peripheral blood phytohaemagglutinin-stimulated lymphocytes by fluorescein labelling and location of the binding site, Biochem. J. 276:733–738 (1991)

    PubMed  CAS  Google Scholar 

  11. G.W. Bates, J. Wernicke, The kinetics and mechanism of iron(III) exchange between chelates and transferrin, J. Biol. Chem. 246:3679–3685 (1971)

    PubMed  CAS  Google Scholar 

  12. R. Furukawa, J.E. Wampler, M. Fechheimer, Cytoplasmic pH of Dictyostelium discoideum amebae during early development: identification of two cell subpopulations before the aggregation stage, J. Cell Biol., 110:1947–1954 (1990)

    Article  PubMed  CAS  Google Scholar 

  13. S. Bassnett, L. Reinisch, D. C. Beebe, Intracellular pH measurement using single excitation-dual emission fluorescence ratios, Am. J. Physiol. 258:C171–C178 (1990)

    PubMed  CAS  Google Scholar 

  14. G.R. Bright, G. W. Fisher, J. Rogowska, D. L. Taylor, Fluorescence ratio imaging microscopy: temporal and spatial measurements of cytoplasmic pH, J. Cell Biol., 104:1019–1033 (1987)

    Article  PubMed  CAS  Google Scholar 

  15. O. Seksek, N. Henry-Toulmé, F. Sureau, J. Bolard, SNARF-1 as a intracellular pH indicator in laser microspectrofluorometry: a critical assessment, Anal. Biochem: 193:49–54 (1991)

    Article  PubMed  CAS  Google Scholar 

  16. F.F. Pindak, W. A. Gardner, jr., M. M. de Pindak, Growth and cytopathogenicity of Trichomonas vaginalis in tissue cultures, J. Clin. Microbiol. 23:672–678 (1985)

    Google Scholar 

  17. K. Nyberg, U. Johansson, A. Johansson, and P. Camner, Phagolysosomal pH and location of particles in alveolar macrophages, Fundam. Appl. Toxicol. 16:393–400 (1991)

    Article  PubMed  CAS  Google Scholar 

  18. S.M. Searle, M. Müller, Inorganic pyrophosphatase of Trichomonas vaginalis, Mol. Biochem. Parasitol. 44:91–96 (1991)

    Article  PubMed  CAS  Google Scholar 

  19. E. Mertens, E. Van Schaftingen, M. Müller, Presence of afructose-2, 6-bisphosphate-insensitive pyrophosphate: fructose-6-phosphate phosphotransferase in the anaerobic protozoa Tritrichomonas foetus, Trichomonas vaginalis and Isotricha prostoma, Mol. Biochem. Parasitol. 37:183–190 (1989)

    Article  PubMed  CAS  Google Scholar 

  20. J. Tachezy, J. Kulda, I. Bahníkovä, P. Suenan, J. Räzga, J. Schrevel, Tritrichomonas foetus: iron acquisition from lactoferrin and transferrin, Exp. Parasitol., in press

    Google Scholar 

  21. P. Cimprich, J. Slavík, Fluorescent measurement of intracellular pH, J. Fluorescence, in press

    Google Scholar 

  22. CH. S. Owen, Comparison of spectrum-shifting intracellular pH probes 5′(and 6′)-carboxy-10-dimethylamino-3-hydroxyspiro [7H-benzo[c] xanthene-7,1′(3′H)-isobenzofuran]-3′-one and 2′,7′-Biscarboxyethyl-5(and 6)-carboxyfluorescein, Anal. Biochem. 204:65–71 (1992)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gregor, M., Tachezy, J., Slavík, J. (1996). The Effect of Lysosomal pH on Lactoferrin-Dependent Iron Uptake in Tritrichomonas foetus . In: Slavík, J. (eds) Fluorescence Microscopy and Fluorescent Probes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1866-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1866-6_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1868-0

  • Online ISBN: 978-1-4899-1866-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics