Skip to main content

Fluorescence Spectroscopic Studies of Proteins

  • Chapter
Proteins: Structure, Function, and Engineering

Part of the book series: Subcellular Biochemistry ((SCBI,volume 24))

Abstract

Fluorescence spectroscopy has emerged as one of the most important tools in the study of protein structure and function. Sensitivity of the fluorescence techniques is a major advantage. Although it cannot provide total structure like X-ray crystallography or nuclear magnetic resonance (NMR), the sensitivity of the technique allows one to work at or near the intracellular concentrations of macro-molecules and ligands. This is particularly important for proteins that self-associate at higher concentrations. Although steady-state fluorescence spectra can now be easily obtained and steady-state fluorometers are inexpensive and widely available, they suffer from several disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreu, J. M., Gorbunoff, M. J., Lee, J. C, and Timasheff, S. N., 1984, Interaction of tubulin with bi-functional colchicine analogues: An equilibrium study, Biochemistry 23:1742–1752.

    Article  PubMed  CAS  Google Scholar 

  • Andreu, J. M., Gorbunoff, M. J., Medrano, F. J., Rossi, M., and Timasheff, S. N., 1991, Mechanism of colchicine binding to tubulin: Tolerance of substituents in ring C′ of biphenyl analogues, Biochemistry 30:3777–3785.

    Article  PubMed  CAS  Google Scholar 

  • Bane, S., Puett, D., Macdonald, T. L., and Williams, R. C, 1984, Binding to tubulin of the colchicine analog 2-methoxy-5-(2′,3′,4′-trimethoxy phenyl) tropone, J. Biol. Chem. 259:7391–7398.

    PubMed  CAS  Google Scholar 

  • Bane-Hastie, S., 1989, Spectroscopic and kinetic features of Allocolchicine binding to tubulin, Biochemistry 28:7753–7760.

    Article  Google Scholar 

  • Banik, U., Saha, R., Mandai, N. C., Bhattacharyya, B., and Roy, S., 1992, Multiphasic denaturation of λ repressor by urea and its implications for the repressor structure, Eur. J. Biochem. 206:15–21.

    Article  PubMed  CAS  Google Scholar 

  • Banik, U., Mandai, N. C., Bhattacharyya, B., and Roy, S., 1993, A fluorescence anisotropy study of tetramer-dimer equilibrium of λ repressor and its implication for function, J. Biol. Chem. 268:3938–3943.

    PubMed  CAS  Google Scholar 

  • Banerjee, A., and Bhattacharyya, B., 1979, Colcemid and colchicine binding to tubulin, FEBS Lett. 99:333–336.

    Article  PubMed  CAS  Google Scholar 

  • Beecham, J. M., and Brand, L., 1985, Time-resolved fluorescence of proteins, Annu. Rev. Biochem. 54:43–71.

    Article  Google Scholar 

  • Bhattacharyya, T., and Roy, S., 1993, A fluorescence spectroscopic study of substrate induced conformational changes in glutaminyl-tRNA synthetase. Biochemistry 32:9268–9273.

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya, B., and Wolff, J., 1974, Promotion of fluorescence upon binding of colchicine to tubulin, Proc. Natl. Acad. Sci. USA 71:2627–2631.

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya, B., and Wolff, J., 1984, Immobilization dependent fluorescence of colchicine, J. Biol. Chem. 259:11836–11843.

    PubMed  CAS  Google Scholar 

  • Bhattacharyya, B., Howard, R., Maity, S. N., Brossi, A., Sharma, P. N., and Wolff, J., 1986, B-ring regulation of colchicine binding kinetics and fluorescence, Proc. Natl. Acad. Sci. USA 83:2052–7055.

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya, T., Bhattacharyya, A., and Roy, S., 1991, A fluorescence spectroscopic study of glutaminyl-tRNA synthetase from Escherichia coli and its implications for the enzyme mechanism. Eur. J. Biochem. 200:739–745.

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya, A., Bhattacharyya, B., and Roy, S., 1993, A study of colchicine tubuline complex by donor quenching of fluorescence energy transfer, Eur. J. Biochem. 216:757–761.

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya, A., Bhattacharyya, A., and Roy, S., 1994, Magnesium induced structural changes in tubulin, J. Biol. Chem., in press.

    Google Scholar 

  • Brochon, J. C, Wahl, P. H., Jallon, J. M., and Iwatsubo, M., 1976, Pulse fluorimetry study of beef liver glutamate dehydrogenase-reduced nicotinamide adeninie dinucleotide phosphate complex, Biochemistry 15:3259–3265.

    Article  PubMed  CAS  Google Scholar 

  • Cantor, C. R., and Schimmel, P., 1980, Biophysical Chemistry, W. H. Freeman, San Francisco.

    Google Scholar 

  • Creighton, T., 1992, Protein Folding, W. H. Freeman, New York.

    Google Scholar 

  • Fitzgerald, T. J., 1976, Molecular features of colchicine associated with antimitotic activity and inhibition of tubulin polymerization, Biochem. Pharmacol. 25:1383–1387.

    Article  PubMed  CAS  Google Scholar 

  • Flavin, M., and Slaughter, C., 1974, Microtubule assembly and function in chlamydomonas: Inhibition of growth and flagellar regeneration by antitubulin and other drugs and isolation of resistant mutants, J. Bacteriol. 118:59–69.

    PubMed  CAS  Google Scholar 

  • Ghosh Choudhury, G., Bannerjee, A., Bhattacharyya, B., and Biswas, B. B., 1983, Interaction of colchicine analogues with purified tubulin, FEBS Lett. 161:55–59.

    Article  Google Scholar 

  • Jahn, M., Rogers, M. J., and Soll, D., 1991, Anticodon and acceptor stem nucleotides in tRNAgln are major recognition elements for E. coli glutaminyl-tRNA synthetase, Nature 352:268–260.

    Article  Google Scholar 

  • Klotz, I. M., 1986, Introduction to Biomolecular Energetics, Academic Press, Orlando, FL.

    Google Scholar 

  • Kung, C. E., and Reed, J. R., 1989, Fluorescent molecular rotors: A new class of probes for tubulin structure and assembly, Biochemistry 28:6678–6686.

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz, J. R., 1983, Principles of Fluorescence Spectroscopy, Plenum Press, New York.

    Book  Google Scholar 

  • Letterier, F., and Rieger, F., 1975, Immobilization of colchicine at low temperature, CRSA Trav. Sci. 5:224–225.

    Google Scholar 

  • Lin, S. X., Wang, Q., and Wang, Y. L., 1988, Interactions between E. coli arginyl-tRNA synthetase and its substrates. Biochemistry 27:6348–6353.

    Article  PubMed  CAS  Google Scholar 

  • Mas, M. T., and Colman, R. F., 1985, Spectroscopic studies of the interactions of coenzymes and coenzyme fragments with pig heart oxidised triphospho pyridine specific isocitrate dehydrogenase, Biochemistry 24: 1634–1646.

    Article  PubMed  CAS  Google Scholar 

  • Medrano, F. J., Andreu, J. M., Gorbunoff, M. J., and Timasheff, S. N., 1989, Role of colchicine rings B and C in the binding process to tubulin, Biochemistry 28:5589–5599.

    Article  PubMed  CAS  Google Scholar 

  • Mejilano, M. R., and Himes, R. H., 1989, Tubulin dimer dissociation detected by fluorescence anisotropy, Biochemistry 28:6518–6524.

    Article  Google Scholar 

  • Menendez, M., Laynez, J., Medrano, F. J., and Andreu, J. M., 1989, A thermodynamic study of the interaction of tubulin with colchicine site ligands, J. Biol. Chem. 264:16367–16371.

    PubMed  CAS  Google Scholar 

  • Panda, D., Roy, S., and Bhattacharyya, B., 1992, Reversible dimer dissociation of tubulin-S and tubulin detected by fluorescence anistotropy. Biochemistry 31:9709–9716.

    Article  PubMed  CAS  Google Scholar 

  • Prendergast, F. G., Meyer, M., Carlson, G. L., Iida, S., and Potter, J. D., 1983, Synthesis, spectral properties and use of 6-acryloyl-2-dimethyl aminonapthalene (acrrylodan), J. Biol. Chem. 258:7541–7544.

    PubMed  CAS  Google Scholar 

  • Ptashne, M., 1992, A Genetic Switch, Cell Press and Blackwell Scientific Publications, Cambridge, MA.

    Google Scholar 

  • Pyles, E. A., and Bane-Hastie, S., 1992, Role of the B-ring substituent in the fluorescence of colchicinoid-tubulin and allocolchicinoid-tubulin complexes. Biochemistry 31:7086–7093.

    Article  PubMed  CAS  Google Scholar 

  • Pyles, E. A., and Bane-Hastie, S., 1993, Effect of the B-ring and C-7 substituent on the kinetics of colchicine-tubulin association, Biochemistry 32:2329–2336.

    Article  PubMed  CAS  Google Scholar 

  • Ravel, J. M., Wang, S., Heinemeyer, C, and Shive, W., 1965, Glutamyl and glutaminyl ribonucleic acid synthetase of Escherichia coli W, J. Biol. Chem. 240:430–438.

    Google Scholar 

  • Ray, K., Bhattacharyya, B., and Biswas, B. B., 1981, Role of B-ring of colchicine in its binding to tubulin, J. Biol. Chem. 256: 6241–6244.

    PubMed  CAS  Google Scholar 

  • Ray, K., Bhattacharyya, B., and Biswas, B. B., 1984, Anion induced increases in the affinity of colcemid binding to tubulin, Eur. J. Biochem. 142:577–581.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, C.G., and Weber, G., 1969, Dimer formation from 1-Anilino-8-napthalene sulfonate catalyzed by bovine serum albumin. A new fluorescent molecule with exceptional binding properties, Biochemistry 8:3915–3920.

    Article  PubMed  CAS  Google Scholar 

  • Rould, M. A., Perona, J. J., Soli, D., and Steitz, T. A., 1989, Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNAgln and ATP at 2.8 Ã… resolution. Science 246:1135–1142.

    Article  PubMed  CAS  Google Scholar 

  • Rould, M. A., Perona, J. J., and Steitz, T. A., 1991, Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase. Nature 352:213–218.

    Article  PubMed  CAS  Google Scholar 

  • Sackett, D. L., Bhattacharyya, B., and Wolffe, J., 1985, Tubulin subunit carboxyl termini determine polymerization efficiency, J. Biol. Chem. 260:43–45.

    PubMed  CAS  Google Scholar 

  • Saha, R., Banik, U., Bandyopadhyay, S., Mandai, N. C., Bhattacharyya, B., and Roy, S., 1992, An operator induced conformational change in the C-terminal domain of λ repressor, J. Biol. Chem. 267:5862–5867.

    PubMed  CAS  Google Scholar 

  • Schimmel, P., 1987, Aminoacyl-tRNA synthetases: General scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs, Annu. Rev. Biochem. 56:125–158.

    Article  PubMed  CAS  Google Scholar 

  • Secrist, J. A., III, Barrio, J. R., and Leonard, N. J., 1972, A fluorescent modification of adenosine tri-phosphate with activity in enzyme systems. Science 175:646–647.

    Article  PubMed  CAS  Google Scholar 

  • Semiostnov, G. V., Rodionova, N. A., Kutyshenko, V. P., Ebert, B., Blank, J., and Ptitsyn, O. B., 1987, Sequential mechanism of refolding of carbonic anhydrase B, FEBS Lett. 224:9–13.

    Article  Google Scholar 

  • Shobha, J., Bhattacharyya, B., and Balasubramanium, D., 1989, Use of micelles in studying drug binding site: Simulation of the tubulin bound fluorescence of colchicine, J. Biochem. Biophys. Methods 18:287–296.

    Article  PubMed  CAS  Google Scholar 

  • Shore, J. D., and Chakrabarti, S. K., 1976, Subunit dissociation of malate dehydrogenase, Biochemistry 15:875–879.

    Article  PubMed  CAS  Google Scholar 

  • Stryer, L., 1965, The interaction of a Napthalene dye with Apomyoglobin and Apohemoglobin: A flourescent probe for non-polar binding sites, J. Mol. Biol. 13:482–495.

    Article  PubMed  CAS  Google Scholar 

  • Weber, G., and Farris, F. J., 1979, Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-Propionyl-2-dimethyl amino napthalene, Biochemistry 18:3075–3078.

    Article  PubMed  CAS  Google Scholar 

  • Weisenberg, R. C., Borisy, G. G., and Taylor, E. W., 1968, The colchicine binding protein of mammalian brain and its relation to microtubule. Biochemistry 7:4466–4478.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, L., 1970, Properties of colchicine binding protein from chick embryo brain. Interactions with vinca alkaloids and podophyllotoxin, Biochemistry 9:4999–5007.

    Article  PubMed  CAS  Google Scholar 

  • Wu, P., and Brand, L., 1992, Orientation factor in steady-state and time-resolved resonance energy transfer measurements, Biochemistry 31:7939–7947.

    Article  PubMed  CAS  Google Scholar 

  • Yarbrough, L. R., and Kirsch, M., 1981, Binding of fluorescent analogs of GTP to the exchangeable nucleotide binding site of tubulin, J. Biol. Chem. 256:112–117.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Roy, S., Bhattacharyya, B. (1995). Fluorescence Spectroscopic Studies of Proteins. In: Biswas, B.B., Roy, S. (eds) Proteins: Structure, Function, and Engineering. Subcellular Biochemistry, vol 24. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1727-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1727-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1729-4

  • Online ISBN: 978-1-4899-1727-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics