Skip to main content

Neuropharmacology of Cocaine and Ethanol Dependence

  • Chapter
Recent Developments in Alcoholism

Part of the book series: Recent Developments in Alcoholism ((RDIA,volume 10))

Abstract

Drug addiction includes two important characteristics, chronic compulsive or uncontrollable drug use and a withdrawal syndrome when use of the drug is stopped. Animal models for the motivational components of drug dependence have been developed allowing a systematic exploration of the neurobiological mechanisms of drug dependence. The reinforcing actions of acute cocaine as measured by intravenous cocaine self-administration appear to be mediated by the presynaptic release of dopamine in the region of the nucleus accumbens and may preferentially involve the dopamine D-1 receptor subtype. The nucleus accumbens circuitry involved in the reinforcing actions of cocaine may include the ventral pallidum and may be modulated by serotonin. Chronic cocaine produces increases in brain reward thresholds that may reflect the “dysphoria” and anhedonia associated with cocaine dependence and suggests a dysregulation of brain reward systems possibly involving dopamine. Reliable measures for the acute reinforcing effects of ethanol in nondependent animals have been established in the rat using a lever press operant and a taste habituation procedure. Important roles have been established for serotonin, GABA, dopamine, and opioids in the acute reinforcing properties of ethanol, perhaps acting on some of the same neural circuitry subsuming the reinforcing actions of other drugs of abuse. Studies of the motivational aspects of ethanol dependence have suggested a functional role for brain corticotropin-releasing factor. These results suggest that the neurobiology of drug dependence involves not only neurotransmitters that mediate the acute reinforcing properties of drugs, but also the aversive motivational and emotional aspects of drug withdrawal. Advances in our understanding of brain changes associated with the switch from acute effects to chronic actions may provide a key to our understanding of not only drug dependence, but also psychopathology such as, anxiety, and affective disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nelson JE, Pearson HW, Sayer N, Glenn TJ: Guide to Drug Abuse Research Terminology. US Department of Health and Human Services, Washington, DC, 1980.

    Google Scholar 

  2. Eddy NB, Halbach H, Ksbell H, Seevers MH: Drug dependence, its significance and characteristics. Bull WHO 32:721–723, 1965.

    PubMed  CAS  Google Scholar 

  3. Koob GF, Bloom FE: Cellular and molecular mechanisms of drug dependence. Science 242:715–723, 1988.

    PubMed  CAS  Google Scholar 

  4. Sparber SB, Meyer DR: Clonidine antagonizes naloxone induced suppression of conditioned behavior and bodyweight loss in morphine dependent rats. Pharmacol Biochem Behav 9:319–325, 1978.

    PubMed  CAS  Google Scholar 

  5. Denoble U, Begleiter H: Response suppression on a mixed schedule of reinforcement during alcohol withdrawal. Pharmacol Biochem Behav 5:227–229, 1976.

    PubMed  CAS  Google Scholar 

  6. Kokkinidis L, Zacharko RM, Predy PA: Post-amphetamine depression of self-stimulation responding from the substantia nigra: reversal by tricyclic antidepressants. Pharmacol Biochem Behav 13:379–383, 1980.

    PubMed  CAS  Google Scholar 

  7. Kokkinidis L, Zacharko RM, Anisman H: Amphetamine withdrawal: a behavioral evaluation. Life Sci 38:1617–1623, 1986.

    PubMed  CAS  Google Scholar 

  8. Markou MA, Koob GF: Postcocaine anhedonia: an animal model of cocaine withdrawal. Neuropsychopharmacology 4:17–26, 1991.

    PubMed  CAS  Google Scholar 

  9. Baldwin HA, Rassnick S, Rivier J, Koob GF, Britton KT: CRF antagonist blocks alcohol withdrawal “anxiogenic” response. Psychopharmacology 103:227–232, 1991.

    PubMed  CAS  Google Scholar 

  10. Stinus L, Le Moal M, Koob GF: The nucleus accumbens and amygdala as possible substrates for the aversive stimulus effects of opiate withdrawal. Neuroscience 37:767–773, 1990.

    PubMed  CAS  Google Scholar 

  11. Fischman MW, Schuster CR, Hatano Y: A comparison of the subjective and cardiovascular effects of cocaine and lidocaine in humans. Pharmacol Biochem Behav 18:123–127, 1983.

    PubMed  CAS  Google Scholar 

  12. Groppetti A, Zambotti F, Biazzi A, Mantegazza P: Amphetamine and cocaine on amine turnover, in Usdin E, Snyder SH (eds): Frontiers in Catecholamine Research. Oxford, Pergamon Press, 1973, p 917.

    Google Scholar 

  13. Spealman RD, Goldberg SR, Kelleher RT, Goldberg DM, Charlton JP: Some effects of cocaine and two cocaine analogs on schedule controlled behavior of squirrel monkeys. J Pharmacol Exp Ther 202:500–509, 1977.

    PubMed  CAS  Google Scholar 

  14. Kornetsky C, Esposito RU: Reward and detection thresholds for brain stimulation: dissociative effects of cocaine. Brain Res 209:496–500, 1981.

    PubMed  CAS  Google Scholar 

  15. Pickens R, Thompson T: Cocaine reinforced behavior in rats: effects of reinforcement magnitude and fixed ratio size. J Pharmacol Exp Ther 161:122–129, 1968.

    PubMed  CAS  Google Scholar 

  16. Simon P: Psychopharmacological profile of cocaine, in Usdin E, Snyder SH (eds): Frontiers of Catecholamine Research. Oxford, Pergamon Press, 1973, p 1043.

    Google Scholar 

  17. Randrup A, Munkvad I: Biochemical, anatomical and psychological investigations of stereotyped behavior induced by amphetamines, in Costa E, Garahini S (eds): Amphetamines and Related Compounds. New York, Raven Press, 1970, p 695.

    Google Scholar 

  18. Kornetsky C, Esposito RU: Euphorigenic drugs: effects on reward pathways of the brain. Fed Proc 38:2473–2476, 1979.

    PubMed  CAS  Google Scholar 

  19. Kornetsky C, Bain G: Biobehavioral bases of the reinforcing properties of opiate drugs. Ann NY Acad Sci 398:240–259, 1982.

    Google Scholar 

  20. Ritz MC, Lamb RJ, Goldberg SR, Kuhar MJ: Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237:1219–1223, 1987.

    PubMed  CAS  Google Scholar 

  21. Kelly PH, Seviour PW, Iversen SD: Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res 94:507–522, 1975.

    PubMed  CAS  Google Scholar 

  22. Kelly PH, Iversen SD: Selective 6-OHDA-induced destruction of mesolimbic dopamine neurons: abolition of psychostimulant-induced locomotor activity in rats. Eur J Pharmacol 40:45–56, 1976.

    PubMed  CAS  Google Scholar 

  23. Roberts DCS, Zis AP, Fibiger HC: Ascending catecholamine pathways and amphetamine-induced locomotor activity: importance of dopamine and apparent non-involvement of norepinephrine. Brain Res 93:441–454, 1975.

    PubMed  CAS  Google Scholar 

  24. Joyce EM, Koob GF: Amphetamine-, scopolamine-, and caffeine-induced locomotor activity following 6-hydroxydopamine lesions of the mesolimbic dopamine system. Psychopharmacology 73:311–313, 1981.

    PubMed  CAS  Google Scholar 

  25. Vaccarino FJ, Amalric M, Swerdlow NR, Koob GF: Blockade of amphetamine-but not opiateinduced locomotion following antagonism of dopamine function in the rat. Pharmacol Biochem Behav 24:61–65, 1986.

    PubMed  CAS  Google Scholar 

  26. Swerdlow NR, Koob GF: Separate neural substrates of the locomotor-activating properties of amphetamine, caffeine and corticotropin releasing factor (CRF) in the rat. Pharmacol Biochem Behav 23:303–307, 1985.

    PubMed  CAS  Google Scholar 

  27. Jonsson LE, Anggard E, Gunne LM: Blcokade of intravenous amphetamine euphoria in man. Clin Pharmacol Ther 12:889–896, 1971.

    PubMed  CAS  Google Scholar 

  28. Pickens R, Meisch RA, Dougherty JA: Chemical interactions in amphetamine reinforcement. Psychol Rep 23:1267–1270, 1968.

    PubMed  CAS  Google Scholar 

  29. Risner M, Jones BE: Role of noradrenergic and dopaminergic processes in amphetamine self-administration. Pharmacol Biochem Behav 5:477–482, 1976.

    PubMed  CAS  Google Scholar 

  30. Yokel RA, Wise RA: Attenuation of intravenous amphetamine reinforcement by central dopamine blockade in rats. Psychopharmacology 48:311–318, 1976.

    PubMed  CAS  Google Scholar 

  31. De Wit H, Wise RA: Blockade of cocaine reinforcement in rats with the dopamine receptor blocker pimozide, but not with the noradrenergic blockers phentolamine and phenoxybenzamine. Can J Psychol 31:195–203, 1977.

    PubMed  Google Scholar 

  32. Yokel RA, Wise RA: Increased lever pressing for amphetamine after pimozide in rats: implications for a dopamine theory of reward. Science 187:547–549, 1975.

    PubMed  CAS  Google Scholar 

  33. Ettenberg A, Pettit HO, Bloom FE, Koob GF: Heroin and cocaine intravenous self-administration in rats: mediation by separate neural systems. Psychopharmacology 78:204–209, 1982.

    PubMed  CAS  Google Scholar 

  34. Roberts DCS, Vickers G: Atypical neuroleptics increase self-administration of cocaine: an evaluation of a behavioral screen for antipsychotic activity. Psychopharmacology 82:135–139, 1984.

    PubMed  CAS  Google Scholar 

  35. Koob GF, Le HT, Creese I: D-1 receptor antagonist SCH 23390 increases cocaine self-administration in the rat. Neurosci Lett 79:315–321, 1987.

    PubMed  CAS  Google Scholar 

  36. Roberts DCS, Corcoran ME, Fibiger HC: On the role of ascending catecholaminergic systems in intravenous self-administration of cocaine. Pharmacol Biochem Behav 6:615–620, 1977.

    PubMed  CAS  Google Scholar 

  37. Lyness WH, Friedle NM, Moore KE: Destruction of dopaminergic nerve terminals in nucleus accumbens: effect on d-amphetamine self-administration. Pharmacol Biochem Behav 11:553–556, 1979.

    PubMed  CAS  Google Scholar 

  38. Roberts DCS, Koob GF, Klonoff P, Fibiger HC: Extinction and recovery of cocaine self-administration following 6-hydroxydopamine lesions of the nucleus accumbens. Pharmacol Biochem Behav 12:781–787, 1980.

    PubMed  CAS  Google Scholar 

  39. Roberts DCS, Koob GF: Disruption of cocaine self-administration following 6-hydroxydopamine lesions of the ventral tegmental area in rats. Pharmacol Biochem Behav 17:901–904, 1982.

    PubMed  CAS  Google Scholar 

  40. Martin-Iverson MT, Szostak C, Fibiger HC: 6-hydroxydopamine lesions of the medial prefrontal cortex fail to influence intravenous self-administration of cocaine. Psychopharmacology 88:310–314,1986.

    PubMed  CAS  Google Scholar 

  41. Koob GF, Vaccarino FJ, Amalric M, Bloom FE: Positive reinforcement properties of drugs: search for neural substrates, in Engel J, Oreland L (eds): Brain Reward Systems and Abuse. New York, Raven Press, 1987, p 35.

    Google Scholar 

  42. Le Moal M, Stinus L, Simon H: Increased sensitivity to (+)−amphetamine self-administration by rats following mesocorticolimbic dopamine neurone destruction. Nature 280:156–158, 1979.

    PubMed  Google Scholar 

  43. Deminiere JM, Simon H, Herman JP, Le Moal M: 6-Hydroxydopamine lesion of the dopamine mesocorticolimbic cell bodies increases (+)−amphetamine self-administration. Psychopharmacology 83:281–284, 1984.

    PubMed  CAS  Google Scholar 

  44. Roberts DCS: Break points on a progressive ratio schedule reinforced by intravenous apomorphine increase daily following 6-hydroxydopamine lesions of the nucleus accumbens. Pharmacol Biochem Behav 32:43–47, 1989.

    PubMed  CAS  Google Scholar 

  45. Porrino LJ, Ritz MC, Goodman NL, Sharpe LG, Kuhar MJ, Goldberg SR: Differential effects of the pharmacological manipulation of serotonin systems on cocaine and amphetamine self-administration in rats. Life Sci 45:1529–1535, 1988.

    Google Scholar 

  46. Carroll ME, Lac ST, Asenio M, Kragh R: Fluoxetine reduces intravenous cocaine self-administration in rats. Pharmacol Biochem Behav 35:237–244, 1990.

    PubMed  CAS  Google Scholar 

  47. Lyness WH: Effect of L-tryptophan pretreatment on d-amphetamine self-administration. Subst Alcohol Actions Misuse 4:305–312, 1983.

    PubMed  CAS  Google Scholar 

  48. Lynn WH, Moore KE: Increased self-administration of d-amphetamine by rats pretreated with meterzoline. Pharmacol Biochem Behav 18:721–724, 1983.

    Google Scholar 

  49. Lyness WH, Friedle NM, Moore KE: Increased self-administration of d-amphetamine after destruction of 5-hydroxytryptaminergic neurons. Pharmacol Biochem Behav 12:937–941, 1980.

    PubMed  CAS  Google Scholar 

  50. Loh EA, Roberts DCS: Break-points on a progressive ratio schedule reinforced by intravenous cocaine increase following depletion of forebrain serotonin. Psychopharmacology 101:262–266, 1990.

    PubMed  CAS  Google Scholar 

  51. Mogenson GJ, Nielson MA: Evidence that an accumbens to subpallidal GABAergic projection contributes to locomotor activity. Brain Res Bull 11:309–314, 1983.

    PubMed  CAS  Google Scholar 

  52. Swerdlow NR, Koob GF: Neural substrates of apomorphine-stimulated locomotor activity following denervation of the nucleus accumbens. Life Sci 35:2537–2544, 1984.

    PubMed  CAS  Google Scholar 

  53. Zito KA, Vickers G, Roberts DCS: Disruption of cocaine and heroin self-administration following kainic acid lesions of the nucleus accumbens. Pharmacol Biochem Behav 23:1029–1036, 1985.

    PubMed  CAS  Google Scholar 

  54. Hubner CB, Koob GF: The ventral pallidum plays a role in mediating cocaine and heroin self-administration in the rat. Brain Res 508:20–29, 1990.

    PubMed  CAS  Google Scholar 

  55. Gawin FH, Kleber HD: Abstinence symptomatology and psychiatric diagnosis in cocaine abusers. Arch Gen Psychiatry 43:107–113, 1986.

    PubMed  CAS  Google Scholar 

  56. Ellinwood EH, Petrie WM: Dependence on amphetamine, cocaine and other stimulants, in Pradhan SN (ed): Drug Abuse: Clinical and Basic Aspects. St. Louis, Mosby, 1977, p 248.

    Google Scholar 

  57. Stellar JR, Stellar E: The Neurobiology of Reward and Motivation. New York, Springer-Verlag, 1985.

    Google Scholar 

  58. Esposito RU, Motola AHD, Kornetsky C: Cocaine: Acute effects on reinforcement thresholds for self-stimulation behavior to the medial forebrain bundle. Pharmacol Biochem Behav 8:437–439, 1978.

    PubMed  CAS  Google Scholar 

  59. Dackis CA, Gold MS: New concepts in cocaine addiction: the dopamine depletion hypothesis. Neurosci Biobehav Rev 9:469–477, 1985.

    PubMed  CAS  Google Scholar 

  60. Meisch RA: Animal studies of alcohol intake. J Psychiatr Res 141:113–120, 1982.

    CAS  Google Scholar 

  61. Meisch RA: Alcohol self-administration in experimental animals, in Smart RG, Glaser FB, Israel Y, Cappel H, Kalant H, Schmidt W, Sellers EM (eds): Research Advances in Alcohol and Drug Problems, 8th ed. New York, Plenum Press, 1984, p 23.

    Google Scholar 

  62. Samson HH: Initiation of ethanol-maintained behavior: a comparison of animal models and their implication of human drinking, in Thompson T, Dews PB, Barrett JE (eds): Neurobehavioral Pharmacology, Vol. 6. Hillsdale, NJ, Lawrence Erlbaum, 1987, p 221.

    Google Scholar 

  63. Stewart RB, Perlanski E, Grupp LA: Ethanol as a reinforcer for rats: factors of facilitation and constraint. Alcohol Clin Exp Res 12:599–608, 1988.

    PubMed  CAS  Google Scholar 

  64. Lester D, Freed EX: Criteria for an animal model of alcoholism. Pharmacol Biochem Behav 1:103–107, 1973.

    PubMed  CAS  Google Scholar 

  65. Mello NK: A review of methods to induce alcohol addiction in animals. Pharmacol Biochem Behav 1:89–101, 1973.

    PubMed  CAS  Google Scholar 

  66. Veale WL: Ethanol selection in the rat following forced acclimation. Pharmacol Biochem Behav 1:233–235, 1973.

    CAS  Google Scholar 

  67. Sinclair JD, Senter RJ: Increased preference for ethanol in rats following alcohol deprivation. Psychonom Sci 8:11–12, 1967.

    Google Scholar 

  68. Wayner MJ, Greenberg I: Effects of hypothalamic stimulation, acclimation and periodic withdrawal on ethanol consumption. Physiol Behav 9:737–740, 1972.

    PubMed  CAS  Google Scholar 

  69. Wayner MJ, Greenberg I, Tartaglione R, Nolley D, Fraley S, Cott A: A new factor affecting the consumption of ethyl alcohol and other sapid fluids. Physiol Behav 8:345–362,1972.

    PubMed  CAS  Google Scholar 

  70. Wise RA: Voluntary ethanol intake in rats following exposure to ethanol on various schedules. Psychopharmacology 29:203–210, 1973.

    CAS  Google Scholar 

  71. Amit Z, Stern MH: A further investigation of alcohol preference in the laboratory rat induced by hypothalamic stimulation. Psychopharmacologia 21:317–327, 1971.

    PubMed  CAS  Google Scholar 

  72. Eriksson K: Factors affecting voluntary alcohol consumption in the albino rat. Ann Zool Fenniae 6:227–265, 1969.

    Google Scholar 

  73. Falk JL, Samson HH, Tang M: Chronic ingestion techniques for the production of physical dependence on ethanol, in Gross MM (ed): Alcohol Intoxication and Withdrawal. New York, Plenum Press, 1973, p 197.

    Google Scholar 

  74. Pekkanen L, Rusi M: The effects of niacin and riboflavin on voluntary ethanol intake and metabolism in rats. Pharmacol Biochem Behav 11:575–579, 1979.

    PubMed  CAS  Google Scholar 

  75. Samson HS: Initiation of ethanol reinforcement using a sucrose-substitution procedure in food-and water-sated rates. Alcohol Clin Exp Res 10:436–442, 1986.

    PubMed  CAS  Google Scholar 

  76. Falk JL: Production of polydipsia in normal rats by an intermittent food schedule. Science 133:195–196, 1961.

    PubMed  CAS  Google Scholar 

  77. Falk JL, Samson HH, Winger G: Behavioral maintenance of high concentrations of blood ethanol and physical dependence in the rat. Science 177:811–813, 1972.

    PubMed  CAS  Google Scholar 

  78. Meisch RA, Thompson T: Ethanol intake in the absence of concurrent food reinforcement. Psychopharmacologia 22:72–79, 1971.

    PubMed  CAS  Google Scholar 

  79. Meisch RA: Ethanol self-administration: infrahuman studies: in Thompson T, Dews PB (eds): Advances in Behavioral Pharmacology, Vol. 1. New York, Academic Press, 1977.

    Google Scholar 

  80. Meisch RA, Henningfield JE: Drinking of ethanol by rhesus monkeys: experimental strategies for establishing ethanol as a reinforcer. Adv Exp Med Biol 85:443–463, 1977.

    Google Scholar 

  81. Steward RB, Grupp LA: A simplified procedure for producing ethanol self-administration in rats. Pharmacol Biochem Behav 21:255–258, 1984.

    Google Scholar 

  82. Linseman MA: Alcohol consumption in free-feeding rats: procedural, genetic and pharmaco-kinetic factors. Psychopharmacology 92:254–261, 1987.

    PubMed  CAS  Google Scholar 

  83. Linseman MA: Alcohol consumption in free-feeding rats—procedural and genetic factors. Soc Neurosci Abstr 12:279–279, 1986.

    Google Scholar 

  84. Roehrs TA, Samson HH: Relative responding on concurrent schedules: indexing ethanol’s reinforcing efficacy. Pharmacol Biochem Behav 16:393–396, 1982.

    PubMed  CAS  Google Scholar 

  85. Grant KA, Samson HH: Induction and maintenance of ethanol self-administration without food deprivation in the rat. Psychopharmacology 86:475–479, 1985.

    PubMed  CAS  Google Scholar 

  86. Weiss F, Mitchiner M, Bloom FE, Koob GF: Free-choice responding for ethanol versus water in alcohol-preferring (P) and unselected Wistar rats is differentially altered by naloxone, bromocriptine and methysergide. Psychopharmacology 101:178–186, 1990.

    PubMed  CAS  Google Scholar 

  87. Lumeng, L, Waller MB, McBride WJ, Li TK: Different sensitivities to ethanol in alcohol-preferring and nonpreferring rats. Pharmacol Biochem Behav 16:501–507, 1982.

    PubMed  Google Scholar 

  88. Lumeng L, Li T-K: The development of metabolic tolerance in the alcohol-preferring P rats: comparison of forced and free-choice drinking of ethanol. Pharmacol Biochem Behav 25:1013–1020, 1986.

    PubMed  CAS  Google Scholar 

  89. Ferko AP, Bobyock E: Rates of ethanol disappearance from blood and hypothermia following acute and prolonged ethanol inhalation. Toxicol Appl Pharmacol 50:417–427, 1979.

    PubMed  CAS  Google Scholar 

  90. York JL: A comparison of the discriminative stimulus properties of ethanol, barbital, and phenobarbital in rats. Psychopharmacology 60:19–23,1978.

    PubMed  CAS  Google Scholar 

  91. Imperato A, DiChaira G: Preferential stimulation of dopamine release in the nucleus accumbens of freely moving rats by ethanol. J Pharmacol Exp Ther 239:219–239, 1986.

    PubMed  CAS  Google Scholar 

  92. Waller MB, Murphy JM, McBride WJ, Lumeng L, Li T-K: Effect of low-dose ethanol on spontaneous motor activity in alcohol-preferring and nonpreferring rats. Pharmacol Biochem Behav 24:617–623, 1986.

    PubMed  CAS  Google Scholar 

  93. Li T-K, Lumeng L, McBride WJ, Waller MB, Murphy JM: Studies on animal model of alcoholism, in Braude E, Chao HM (eds): Genetic and Biological Markers in Drug Abuse and Alcoholism, National Institute on Drug Abuse Research Monograph. Rockville, MD, NIDA, 1986, p 41.

    Google Scholar 

  94. Altshuler HL, Phillips PE, Feinhandler DA: Alterations of ethanol self-administration by naltrexone. Life Sci 26:679–688, 1980.

    PubMed  CAS  Google Scholar 

  95. Marfaing-Jallat P, Miceli D, LeMagnen J: Decrease in ethanol consumption by naloxone in naive and dependent rats. Pharmacol Biochem Behav 18:5355–5395, 1983.

    Google Scholar 

  96. Myers RD, Critcher EC: Naloxone alters alcohol drinking induced in the rat by tetrahydropapaveroline (THP) infused ICY Pharmacol Biochem Behav 16:827–836,1982.

    PubMed  CAS  Google Scholar 

  97. Pulvirenti L, Kastin AJ: Naloxone, but not Tyr-MIF-1, reduces volitional ethanol drinking in rats: correlation with degree of spontaneous preferences. Pharmacol Biochem Behav 31:129–129, 1988.

    PubMed  CAS  Google Scholar 

  98. Reid LD, Hunter GA: Morphine and naloxone modulate intake of ethanol. Alcohol 1:33–37, 1984.

    PubMed  CAS  Google Scholar 

  99. Sandi C, Borell J, Guzaz C: Naloxone decreases ethanol consumption within a free choice paradigm in rats. Pharmacol Biochem Behav 29:39–43, 1988.

    PubMed  CAS  Google Scholar 

  100. Volpicelli R, Davis MA, Olgin JE: Naltrexone blocks the post-shock increase of ethanol consumption. Life Sci 38:841–847, 1986.

    PubMed  CAS  Google Scholar 

  101. Hunter GA, Beaman CM, Dunn LL, Reid LD: Selected opioids, ethanol and intake of alcohol. Alcohol 1:43–46, 1984.

    PubMed  CAS  Google Scholar 

  102. Mudar PJ, LeCann NC, Czirr SA, Hubbell CL, Reid LD: Methadone, pentobarbital, pimozide and ethanol-intake. Alcohol 3:303–308, 1986.

    PubMed  CAS  Google Scholar 

  103. Hubbell CL, Czirr SA, Reid LD: Persistence and specificity of small doses of morphine on intake of alcoholic beverages. Alcohol 4:149–156, 1987.

    PubMed  CAS  Google Scholar 

  104. Czirr SA, Hubbell CL, Milano WC, Frank JM, Reid LD: Selected opioids modify intake of sweetened ethanol solution among female rats. Alcohol 4:157–160, 1987.

    PubMed  CAS  Google Scholar 

  105. Beaman CM, Hunter GA, Dunn LL, Reid LD: Opioids, benzodiazepines and intake of ethanol. Alcohol 1:39–42, 1984.

    PubMed  CAS  Google Scholar 

  106. Reid LD, Czirr SA, Bensinger CC, Hubbell CL, Volanth AJ: Morphine and diprenorphine together potentiate intake of alcoholic beverages. Alcohol 4:161–168, 1987.

    PubMed  CAS  Google Scholar 

  107. Samson HH, Doyle TF: Oral ethanol self-administration in the rat: effects of naloxone. Pharmacol Biochem Behav 22:91–99, 1985.

    PubMed  CAS  Google Scholar 

  108. Brown DR, Holtzman SG: Suppression of deprivation-induced food and water intake in rats and mice by naloxone. Pharmacol Biochem Behav 11:567–573, 1979.

    PubMed  CAS  Google Scholar 

  109. Frenk H, Rogers GH: The suppressant effects of naloxone on food and water intake in the rat. Behav Neural Biol 26:23–40, 1979.

    PubMed  CAS  Google Scholar 

  110. Holtzman SG: Suppression of appetitive behavior in the rat by naloxone: lack of effect of prior morphine dependence. Life Sci 24:219–226, 1979.

    PubMed  CAS  Google Scholar 

  111. Hynes MA, Gallagher M, Yacos KV: Systemic and intraventricular naloxone administration: effects on food and water intake. Behav Neural Biol 32:334–342, 1981.

    PubMed  CAS  Google Scholar 

  112. Cooper SJ: Naloxone: Effects on food and water consumption in the non-deprived and deprived rat. Psycho-pharmacology 71(1):1–6, 1980.

    CAS  Google Scholar 

  113. Ostrowski NL, Foley TL, Lind MD, Reid LD: Naloxone reduces fluid intake: effects of food and water deprivation. Pharmacol Biochem Behav 12:431–435, 1980.

    PubMed  CAS  Google Scholar 

  114. Stapleton JM, Ostrowski NL, Merriman VJ, Lind MD, Reid LD: Naloxone reduces fluid consumption in deprived and nondeprived rats. Bull Psychon Soc 13:237–239, 1979.

    CAS  Google Scholar 

  115. Amit S, Sutherland EA, Bill K, Ogren SO: Zimelidine: a review of its effects on ethanol consumption. Neurosci Biobehav Rev 8:35–54, 1984.

    PubMed  CAS  Google Scholar 

  116. Daoust M, Chretien P, Moore N, Saligaut C, Lhuintre JP, Boismare F: Isolation and striatal (3H) serotonin uptake: role in the voluntary intake of ethanol by rats. Pharmacol Biochem Behav 22:205–208, 1985.

    PubMed  CAS  Google Scholar 

  117. Geller I: Effects of para-chlorophenylalanine and 5-hydroxytryptophane on alcohol intake in rats. Pharmacol Biochem Behav 1:361–365, 1973.

    PubMed  CAS  Google Scholar 

  118. Khanna JM, Kalant H, Le AD, Mayer J, LeBlanc AE: Effect of modification of brain serotonin (5-HT) on ethanol tolerance. Alcohol Clin Exp Res 3:353–358, 1979.

    PubMed  CAS  Google Scholar 

  119. Lawrin MO, Naranjo CA, Sellers EM: Identification of new drugs for modulating alcohol consumption. Psycnopharmacol Bull 22:1020–1025, 1986.

    CAS  Google Scholar 

  120. Myers RD, Martin GE: The role of cerebral serotonin in the ethanol preference of animals. Ann NY Acad Sci 215:135–144, 1973.

    PubMed  CAS  Google Scholar 

  121. Rockman GE, Amit Z, Carr G, Brown ZW, Ogren SO: Attenuation of ethanol by 5-hydroxytryptamine blockade in laboratory rats. I. Involvement of brain 5-hydroxytryptamine in the mediation of positive reinforcing properties of ethanol. Arch Int Pharmacodyn Ther 241:245–259, 1979.

    PubMed  CAS  Google Scholar 

  122. Zabik JE, Blinkerd K, Roache JD: Serotonin and ethanol aversion in the rat, in Naranjo CA, Sellers EM (eds): Research Advances in New Psychopharmacological Treatments of Alcoholism. New York, Excerpta Medica, 1985, p 87.

    Google Scholar 

  123. Frey H-H, Magnussen MP, Kaergaard Nielsen C: The effect of p-chloroamphetamine on the consumption of ethanol by rats. Arch Int Pharmacodyn Ther 183:165–172, 1970.

    PubMed  CAS  Google Scholar 

  124. Myers RD, Veale WL: Alcohol preference in the rat: reduction following depletion of brain serotonin. Science 160:1469–1471, 1968.

    PubMed  CAS  Google Scholar 

  125. Opitz K: Beobachtungen bei Alkohol trinkenden Ratten—Einfluss von Fenfluramin. Pharmacopsykiat Neuropychopharmakol 2:202–205, 1969.

    CAS  Google Scholar 

  126. Veale WL, Myers RD: Decrease in ethanol intake in rats following administration of p-chlorophenylalanine. Neuropharmacology 9:317–326, 1970.

    PubMed  CAS  Google Scholar 

  127. Nachman M, Lester D, LeMagnen J: Alcohol aversion in the rat: behavioral assessment of noxious drug effects. Science 168:1244–1246, 1970.

    PubMed  CAS  Google Scholar 

  128. Parker LF, Radow BL: Effects of parachlorophenylalanine on ethanol self-selection in the rat. Pharmacol Biochem Behav 4:535–540, 1976.

    PubMed  CAS  Google Scholar 

  129. Stein JM, Wayner MJ, Tilson HA: The effect of parachlorophenylalanine on the intake of alcohol and saccharin solutions. Pharmacol Biochem Behav 6:117–122, 1977.

    PubMed  CAS  Google Scholar 

  130. Ahlenius S, Carlsson A, Engel J, Svensson T, Sodersten P: Antagonism by alpha methyltyrosine of the ethanol-induced stimulation and euphoria in man. Clin Pharmacol Ther 14:586–591, 1973.

    PubMed  CAS  Google Scholar 

  131. Amit Z, Brown ZW, Levitan DE, Ogren SO: Noradrenergic mediation of the positive reinforcing properties of ethanol. I. Suppression of ethanol consumption in laboratory rats following dopamine-beta-hydroxylase inhibition. Arch Int Pharmacodyn Ther 230:76–82, 1977.

    PubMed  Google Scholar 

  132. Amit Z, Levitan DE, Lindros KO: Suppression of ethanol intake following administration of dopamine-beta-hydroxylase inhibitors in rats. Arch Int Pharmacol Ther 223:114–119, 1976.

    CAS  Google Scholar 

  133. Davis WM, Werner TE, Smith SG: Reinforcement with intragastric infusions of ethanol: blocking effect of FLA-57. Pharmacol Biochem Behav 11:545–548, 1979.

    PubMed  CAS  Google Scholar 

  134. Pfeffer AO, Samson HH: Haloperidol and apomorphine effects on ethanol reinforcement in free-feeding rats. Pharmacol Biochem Behav 29:343–350, 1988.

    PubMed  CAS  Google Scholar 

  135. Pfeffer AO, Samson HH: Oral ethanol reinforcements: interactive effects of amphetamine, pimozide and food restriction. Alcohol Drug Res 6:37–48, 1985.

    PubMed  Google Scholar 

  136. Pfeffer AO, Samson HH: Effect of pimozide on home cage ethanol drinking in the rat: dependence on drinking session length. Drug Alcohol Depend 17:47–55, 1986.

    PubMed  CAS  Google Scholar 

  137. Rassnick S, Pulvirenti L, Koob GF: Effects of a novel dopamine agonist, Sandoz 205-152, on ethanol self-administration. Soc Neurosci Abstr 15:251, 1989.

    Google Scholar 

  138. Hubner CB, Koob GF: Bromocriptine produces decreases in cocaine self-administration in the rat. Neuropsychopharmacology 3:101–108, 1990.

    PubMed  CAS  Google Scholar 

  139. Liljequist S, Engel JA: The effects of GABA and benzodiazepine receptor antagonists on the anti-conflict actions of diazepam or ethanol. Pharmacol Biochem Behav 21:521–525, 1984.

    PubMed  CAS  Google Scholar 

  140. Koob GF, Mendelson WB, Schafer J, Wall TL, Thatcher-Britton K, Bloom FE: Picrotoxin receptor ligard blocks anti-punishment effects of alcohol. Alcohol 5:437–443, 1988.

    PubMed  CAS  Google Scholar 

  141. Frye GD, Brese GR: GABAergic modulation of ethanol-induced motor impairment. J Pharmacol Exp Ther 223:750–756, 1982.

    PubMed  CAS  Google Scholar 

  142. Liljequist S, Engel J: Effects of GABAergic agonists and antagonists on various ethanolinduced behavioral changes. Psychopharmacology 78:71–75, 1982.

    PubMed  CAS  Google Scholar 

  143. Becker HC, Anton RF: Valproate potentiates and picrotoxin antagonizes the anxiolytic action of ethanol in a nonshock conflict task. Neuropharmacology 29:837–843, 1990.

    PubMed  CAS  Google Scholar 

  144. Suzdak PD, Schwartz RD, Skolnick P, Paul SM: Ethanol stimulates gamma-aminobutyric acid receptor-mediated chloride transport in rat brain synaptoneurosome. Proc Natl Acad Sci USA 83:4071–4075, 1986.

    PubMed  CAS  Google Scholar 

  145. Allan AM, Harris RA: Acute and chronic ethanol treatments alter GABA receptor-operated chloride channels. Pharmacol Biochem Behav 27:665–670, 1987.

    PubMed  CAS  Google Scholar 

  146. Boismare F, Daoust M, Moore N, Saligaut C, Lhuintre JP, Chretien P, Durlach J: A homotaurine derivative reduces the voluntary intake of ethanol by rats: area cerebral GABA receptors involved. Pharmacol Biochem Behav 21:787–789, 1984.

    PubMed  CAS  Google Scholar 

  147. Fuchs V, Burbes E, Cooper H: The influence of haloperidol and amino-oxyacetic acid on etonitazene, alcohol, diazepam and barbital consumption. Drug Alcohol Depend 14:179–186, 1984.

    PubMed  CAS  Google Scholar 

  148. Deutsch JA, Walton NY: Diazepam maintenance of alcohol preference during alcohol withdrawal. Science 198:307–309, 1977.

    PubMed  CAS  Google Scholar 

  149. Suzdak PD, Glowa JR, Crawley JN, Schwartz RD, Skolnick P, Paul SM: A selective imidazobenzodiazepine antagonist of ethanol in the rat. Science 236:1243–1247, 1986.

    Google Scholar 

  150. Britton KT, Ehlers CL, Koob GF: Is ethanol antagonist Rol5-4513 selective for ethanol? Science 239:648–650, 1988.

    PubMed  CAS  Google Scholar 

  151. Samson HH, Tolliver GA, Pfeffer AO, Sadeghi KG, Mills FG: Oral ethanol reinforcement in the rat: effect of the partial inverse benzodiazepine agonist R015-4513. Pharmacol Biochem Behav 27:517–519, 1987.

    PubMed  CAS  Google Scholar 

  152. Gianoulakis C: The effect of ethanol on the biosynthesis and regulation of opioid peptides. Experientia 45:428–435, 1989.

    PubMed  CAS  Google Scholar 

  153. Naber D, Soble MG, Pickar D: Ethanol increases opioid activity in plasma of normal volunteers. Pharmacopsychiatry 14:160–161, 1981.

    CAS  Google Scholar 

  154. Patel VA, Pohorecky LA: Acute and chronic ethanol treatment on beta-enorphin and catecholamine levels. Alcohol 6:59–63, 1989.

    PubMed  CAS  Google Scholar 

  155. Schultz R, Wuster M, Duka T, Herz A: Acute and chronic ethanol treatment changes endorphin levels in brain and pituitary. Psychopharmacology 68:221–227, 1980.

    Google Scholar 

  156. Seizinger BR, Bovermann K, Moysinger D, Hollt V, Herz A: Differential effect of acute and chronic ethanol treatment on particular opioid peptide systems in discrete regions of the rat brain and pituitary. Pharmacol Biochem Behav 18:361–369, 1983.

    PubMed  CAS  Google Scholar 

  157. Genazzani AR, Nappi G, Facchinetti F, Mazella GL, Parrini D, Sinforiani E, Petraglia F, Savoldi F: Central deficiency of b-endorphin in alcohol addicts. J Clin Endocrinol Metab 55:583–586, 1982.

    PubMed  CAS  Google Scholar 

  158. Froehlich JC, Harts J, Lumeng L, Li T-K: Naloxone attenuation of voluntary alcohol consumption. Alcohol Alcohol Suppl 1:333–337, 1987.

    PubMed  CAS  Google Scholar 

  159. Blum K, Briggs AH, DeLallo L, Elston SFA, Ochoa R: Whole brain methionine enkephalinase of ethanol-avoiding and ethanol-preferring C57B1 mice. Experientia 38:1469–1470, 1982.

    PubMed  CAS  Google Scholar 

  160. Khanna JM, Le AD, Kalant H, LeBlanc AE: Role of serotonin (5-HT) in tolerance to ethanol and barbiturates, in Begleiter H (ed): Biological Effects of Alcohol. New York, Plenum Press, 1980, p 181.

    Google Scholar 

  161. Le AD, Khanna JM, LeBlanc AE: Effect of modification of brain serotonin (5-HT), norepinephrine (NE) and dopamine (DA) on ethanol tolerance. Psychopharmacology 75:231–235, 1981.

    PubMed  CAS  Google Scholar 

  162. Gongwer MA, Murphy JM, McBride WJ, Lumeng L, Li TK: Regional brain contents of serotonin, dopamine and their metabolites in the selectively bred high-and low-alcohol drinking lines of rats. Alcohol 6:317–320, 1989.

    PubMed  CAS  Google Scholar 

  163. Murphy JM, McBride WJ, Lumeng L, Li T-K: Regional brain levels of monoamines in alcoholpreferring and non-preferring lines of rats. Pharmacol Biochem Behav 16:145–149, 1982.

    PubMed  CAS  Google Scholar 

  164. Murphy JM, McBride WJ, Lumeng L, Li T-K: Contents of monoamines in forebrain regions of alcohol-preferring (P) and non-preferring (NP) lines of rats. Pharmacol Biochem Behav 26:389–392, 1987.

    PubMed  CAS  Google Scholar 

  165. Yoshimoto K, Komura S: Re-examination of the relationship between alcohol preference and brain monoamines in inbred strains of mice including senescence-accelerated mice. Pharmacol Biochem Behav 27:317–322, 1987.

    PubMed  CAS  Google Scholar 

  166. Yoshimoto K, Komura S, Mizohata K: Alcohol preference and brain monoamines in five inbred strains of mice. IRCS Med Sci 13:1192–1193, 1985.

    CAS  Google Scholar 

  167. McBride WJ, Murphy JM, Lumeng L, Li T-K: Effects of Ro-15-4513, fluoxetine and desipramine on the intake of ethanol, water and food by the alcohol-preferring (P) and non-preferring (NP) lines of rats. Pharmacol Biochem Behav 30:1045–1050, 1988.

    PubMed  CAS  Google Scholar 

  168. Murphy JM, Waller MB, Gatto GJ, McBride WJ, Lumeng L, Li T-K: Effects of fluoxetine on the intragastric self-administration of ethanol in the alcohol-preferring P line of rats. Alcohol 5:283–286, 1988.

    PubMed  CAS  Google Scholar 

  169. Brown ZW, Amit Z: The effects of selective catecholamine depletions by 6-hydroxydopamine on ethanol preference in rats. Neurosci Lett 5:333–336, 1977.

    PubMed  CAS  Google Scholar 

  170. Kiianmaa K, Fuxe K, Jonson G, Ahtee L: Evidence for involvement of central NA neurons in alcohol intake. Increased alcohol consumption after degeneration of the NA pathway in the cortex cerebri. Neurosci Lett 1:41–45, 1975.

    CAS  Google Scholar 

  171. Mason ST, Corcoran ME, Fibiger HC: Noradrenaline and ethanol intake in the rat. Neurosci Lett 12:137–142, 1979.

    PubMed  CAS  Google Scholar 

  172. Hunt WA, Majchrowicz E: Alterations in the turnover of brain norepinephrine and dopamine in alcohol-dependent rats. J Neurochem 23:549–552, 1974.

    PubMed  CAS  Google Scholar 

  173. Carlsson A, Lindquist M: Effect of ethanol on the hydroxylation of tyrosine and tryptophan in rat brain in vivo. J Pharm Pharmacol 25:437–440,1973.

    PubMed  CAS  Google Scholar 

  174. Amit Z, Brown ZW: Actions of drugs of abuse on brain reward systems: a reconsideration with specific attention to alcohol. Pharmacol Biochem Behav 17:233–238, 1982.

    PubMed  CAS  Google Scholar 

  175. Bustos G, Roth RH: Effect of acute ethanol treatment on transmitter synthesis and metabolism in central dopaminergic neurons. J Pharm Pharmacol 28:580–582, 1976.

    PubMed  CAS  Google Scholar 

  176. Fadda F, Mosca E, Colombo G, Gessa GL: Effects of spontaneous ingestion of ethanol on brain dopamine metabolism. Life Sci 44:281–287, 1989.

    PubMed  CAS  Google Scholar 

  177. Khatib SA, Murphy JM, McBride WJ: Biochemical evidence for activation of specific monoamine pathways by ethanol. Alcohol 5:295–299, 1988.

    PubMed  CAS  Google Scholar 

  178. Carmichael FJ, Israel Y: Effects of ethanol on neurotransmitter release by rat cortical slices. J Pharmacol Exp Ther 193:824–834, 1975.

    PubMed  CAS  Google Scholar 

  179. Holman RB, Snape BM: Effects of ethanol in vitro and in vivo on the release of endogenous catecholamines from specific regions of the rat brain. J Neurochem 44:357–363, 1985.

    PubMed  CAS  Google Scholar 

  180. Korpi ER, Sinclair JD, Malminen O: Dopamine D2 receptor binding in striatal membranes of rats selected for differences in alcohol-related behaviors. Pharmacol Toxicol 61:94–97, 1987.

    PubMed  CAS  Google Scholar 

  181. Liljeqvist S: Changes in the sensitivity of dopamine receptors in the nucleus accumbens and in the striatum induced by chronic ethanol administration. Acta Pharmacol Toxicol 43:19–28, 1978.

    Google Scholar 

  182. Lucchi L, Lupini M, Govoni S, Covelli V, Spano PF, Trabucchi M: Ethanol and dopaminergic systems. Pharmacol Biochem Behav 18(Suppl 1):379–382,1983.

    PubMed  CAS  Google Scholar 

  183. DiChiara G, Imperato A: Preferential stimulation of dopamine release in mesolimbic systems: a common feature of drugs of abuse, in Sandier M, Feuerstein C, Scatton B (eds): Neurotransmitter Interactions in the Basal Ganglia. New York, Raven Press, 1988, p 171.

    Google Scholar 

  184. Koob GF, Vaccarino FJ, Amalric M, Swerdlow NR: Neural substrates for cocaine and opiate reinforcement, in Fischer S, Raskin A, Uhlenhuth EH (eds): Cocaine: Clinical and Biobehavioral Aspects. New York, Oxford University Press, 1987, p 80.

    Google Scholar 

  185. Siggins GR, Pittman QJ, French ED: Effects of ethanol on CA1 and CA3 pyramidal cells in the hippocampal slice preparation: an intracellular study. Brain Res 414:22–34, 1987.

    PubMed  CAS  Google Scholar 

  186. Baldwin HA, Rassnick S, Rivier J, Koob GF, Britton KT: CRF antagonist reverses the “anxiogenic” response to ethanol withdrawal in the rat. Psychopharmacology 103:227–232, 1991.

    PubMed  CAS  Google Scholar 

  187. Cooper BR, Viik K, Ferris RM, White HL: Antagonism of the enhanced susceptibility to audiogenic seizures during alcohol withdrawal in the rat by gamma-aminobutyric acid (GABA) and GABA-mimetics. J Pharmacol Exp Ther 209:396–408, 1979.

    PubMed  CAS  Google Scholar 

  188. Goldstein DB: Alcohol withdrawal reaction in mice: effects of drugs that modify neurotransmission. J Pharmacol Exp Ther 186:1–9, 1973.

    PubMed  CAS  Google Scholar 

  189. Frye GD, McCown TJ, Breese GR: Differential sensitivity of ethanol withdrawal signs in the rat to gamma-aminobutyric acid (GABA) mimetics: blockade of audiogenic seizures but not forelimb tremors. J Pharmacol Exp Ther 226:720–723, 1983.

    PubMed  CAS  Google Scholar 

  190. Lister RG, Karanian JW: RO15-4513 induces seizures in DBA/2 mice undergoing alcohol withdrawal. Alcohol 4(5):409–411, 1987.

    PubMed  CAS  Google Scholar 

  191. Patel GT, Lal H: Reduction brain GABA and in barbital narcosis during ethanol withdrawal. J Pharmacol Exp Ther 186:625–629, 1973.

    PubMed  CAS  Google Scholar 

  192. Simler SJ, Clement L: Brain GABA turnover rates after spontaneous chronic ethanol intake and withdrawal indiscrete brain areas of C57 mice. J Neurochem 47:1942–1947, 1986.

    PubMed  CAS  Google Scholar 

  193. Wixon HN, Hunt WA: Effect of acute and chronic ethanol treatment on GABA levels and on aminooxyacetic acid-induced GABA accumulation. Subst Alcohol Actions Misuse 1:481–491, 1980.

    PubMed  CAS  Google Scholar 

  194. Rawat AK: Brain levels and turnover rates of presumptive neurotransmitters as influenced by administration and withdrawal of ethanol in mice. J Neurochem 22:915–922, 1974.

    PubMed  CAS  Google Scholar 

  195. Little HJ: Mechanisms that may underlie the behavioral effects of ethanol. Prog Neurobiol 36:171–194, 1991.

    PubMed  CAS  Google Scholar 

  196. Morrow AL, Suzdak PD, Karanian JW, Paul SM: Chronic ethanol administration alters gammaaminobutyric acid, pentobarbital and ethanol-mediated 36 C1-uptake in cerebral cortical synaptoneurosomes. J Pharmacol Exp Ther 246:158–164, 1988.

    PubMed  CAS  Google Scholar 

  197. Aston-Jones G, Foote SL, Bloom FE: Low doses of ethanol disrupt sensory responses of brain noradrenergic neurones. Nature 296:857–860, 1982.

    PubMed  CAS  Google Scholar 

  198. Rogers J, Siggins GR, Schulman JA, Bloom FE: Psychological correlates of ethanol intoxication, tolerance, and dependence in rat cerebellar Purkinje cells. Brain Res 196:183–198, 1980.

    PubMed  CAS  Google Scholar 

  199. Koob GF, Bloom FE: Corticotropin releasing factor and behavior. Fed Proc 44:259–263, 1985.

    PubMed  CAS  Google Scholar 

  200. Britton KT, Koob GF: Alcohol reverses the proconflict effect of corticotropin releasing factor. Regul Pept 16:315–320, 1987.

    Google Scholar 

  201. File SE, Baldwin HA, Hitchcott PK: Flumazenil but not nitrendipine reverses the increased anxiety during ethanol withdrawal in the rat. Psychopharmacology 98:252–264, 1989.

    Google Scholar 

  202. Mello NK: Animal models for the study of alcohol addiction. Psychoneuroendocrinology 1:347–357, 1976.

    CAS  Google Scholar 

  203. Weiss F, Koob GF: The neuropharmacology of ethanol self-administration, in Meyer RE, Koob GF, Lewis MJ, Baul SM (eds): Ethanol Reinforcement. Birkhauser, Boston, 1991, pp 125–162.

    Google Scholar 

  204. Koob GF, Swerdlow NR: Functional Output of the Mesolimbic Dopamine System. Annals of New York Academy of Sciences 537:216–227, 1988.

    CAS  Google Scholar 

  205. Givens BS, Breese, GR: Site-specific enhancement of gamma-aminobutyric acid-mediated inhibition of neural activity by ethanol in the rat medial septal area. J Pharmacol Exp Ther 254:528–538, 1990.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koob, G.F., Weiss, F. (1992). Neuropharmacology of Cocaine and Ethanol Dependence. In: Galanter, M. (eds) Recent Developments in Alcoholism. Recent Developments in Alcoholism, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1648-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1648-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1650-1

  • Online ISBN: 978-1-4899-1648-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics