Skip to main content

Predicting Afforestation Success During Climatic Warming at the Northern Limit of Forests

  • Chapter
Forest Development in Cold Climates

Part of the book series: NATO ASI Series ((NSSA,volume 244))

Abstract

Global temperature increases from greenhouse gases are expected during the 21st Century, possibly as early as the next decade. Warming is predicted to be greatest at highest latitudes. Initial attempts to document climate change will be hampered by the great inter-annual variability in weather at high latitudes and the scarcity of long-term weather records. Certain key properties of these environmental changes, however, can be defined, despite uncertainty concerning results from present climate models. A group of scientists meeting at Villach, Austria, in 1987 (Jaeger, 1988) agreed that 3 °C was a moderate estimate of average global warming during the next century, while at high latitudes (60 to 90° N.), 0.6 to 0.7 °C per decade in winter and 0.1 to 0.2 °C per decade in summer are more probable climate change expectations. Results from the most recent climate model results are not very different and range from 0.4 to 0.8 °C per decade (Mitchell et al., 1990). In addition, results from both the Villach group and the more recent compilations agree that winter precipitation and soil moisture could increase at high latitudes as more precipitation falls, and as more precipitation falls as rain instead of snow. These climate changes are quite intense and rapid. For the next few decades, they may result in a much wider range of temperature and precipitation extremes than has ever been recorded in cold regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aber, J. D., Botkin, D. B., and Melillo, J. M., 1978, Predicting the effects of different harvesting regimes on forest floor dynamics in northern hardwoods, Can. J. For. Res., 8: 306–315.

    Google Scholar 

  • Aber, J. D., and Melillo, J. M., 1982, FORTNITE: A Computer Model of Organic Matter and Nitrogen Dynamics in Forest Ecosystems, Research Bulletin R3130, University of Wisconsin, Madison, Wisconsin, 48 p.

    Google Scholar 

  • Bartlein, P. J., Prentice, I. C., and Webb, T., III, 1986, Climatic response surfaces from pollen data for some eastern North American taxa, J. Biogeogr., 13: 35–57.

    Google Scholar 

  • Belcher, D. M., Holdaway, M. R., and Brand, G. J., 1982, A Description of STEMS: The Stand and Tree Evaluation and Modelling System, General Technical Report NC-94, U.S. Department of Agriculture, Forest Service, North Central Experiment Station, Minneapolis, Minnesota, 18 p.

    Google Scholar 

  • Bennett, K. D., 1984, The post-glacial history of Pinus sylvestris in the British Isles, Quat. Sci. Rev., 3: 133–155.

    Article  Google Scholar 

  • Billings, W. D., 1987, Constraints to plant growth, reproduction and establishment in Arctic environments, Arctic and Alpine Res., 19: 357–365.

    Google Scholar 

  • Blöndal, S., 1987, Afforestation and reforestation in Iceland, Arctic and Alpine Res., 19:526–529.

    Google Scholar 

  • Bonan, G. B., 1988, Environmental Processes and Vegetation Patterns in Boreal Forests, Ph.D. Dissertation, University of Virginia, Charlottesville, Virginia, 286 p.

    Google Scholar 

  • Bonan, G. B., 1990, Carbon and nitrogen cycling in North American boreal forests, II. Biogeographic patterns, Can. J. For. Res., 20: 1077–1088.

    CAS  Google Scholar 

  • Bonan, G. B., and Shugart, H. H., Jr., 1989, Environmental factors and ecological processes in boreal forests, Ann. Rev. Ecol. and Syst., 20: 1–29.

    Article  Google Scholar 

  • Bonan, G. B., Shugart, H. H., and Urban, D. L., 1990, The sensitivity of some high-latitude boreal forests to climatic parameters, Climatic Change, 16: 9–26.

    Article  Google Scholar 

  • Botkin, D. B., Janak, J. F., and Wallis, J. R., 1972, Some ecological consequences of a computer model of forest growth, J. Ecol., 60: 849–872.

    Google Scholar 

  • Botkin, D. B., Janak, J. F., and Wallis, J. R., 1973, Estimating the effects of carbon fertilization on forest composition by ecosystem simulation. In: Woodwell, G. M., and Pecan, E. V., eds., Carbon and the Biosphere, CONF-720510, NTIS, Springfield, Virginia, 328–344.

    Google Scholar 

  • Bowling, S. A., [In press], Climate change as perceived by trees and climate modelers. In: Alden, J. N., odum, S., and Mastrantonio, J. L., eds., Forest Development in Cold Climates, Proceedings of an International Symposium, 1991 June 18–24 [Laugarvatn, Iceland], NATO, Plenum, New York, New York.

    Google Scholar 

  • Burns, R. M., and Honkala, B. H., eds., 1990a, Silvics of North America: Volume 1, Conifers, Agriculture Handbook No. 654, Forest Service, U.S. Department of Agriculture, Washington D.C., 675 p.

    Google Scholar 

  • Burns, R. M., and Honkala, B. H., eds., 1990b, Silvics of North America: Volume 2, Hardwoods, Agriculture Handbook No. 654, Forest Service, U.S. Department of Agriculture, Washington D.C., 877 p.

    Google Scholar 

  • Cramer, W., and Prentice, I. C., 1988, Simulation of regional soil moisture deficits on a European scale, Norsk. Geogr. Tiddskr., 42: 149–151.

    Google Scholar 

  • Dale, V. H., and Hemstrom, M., 1984, CLIMACS: A Computer Model of Forest Stand Development for Western Oregon and Washington, Research Paper PNW-327, Forest

    Google Scholar 

  • Service, U.S. Department of Agriculture, Pacific Northwest Forest and Range Experiment Station, Portland, Oregon, 60 p.

    Google Scholar 

  • Dale, V. H., Hemstrom, M., and Franklin, J., 1986, Modeling the long term effects of disturbances on forest succession, Olympic Peninsula, Washington, Can. J. For. Res.16:56–67.

    Google Scholar 

  • DeBell, D. S., 1990, Populus trichocarpa Torr. & Gray., black cottonwood. In: Silvics of North America: Volume 2, Hardwoods, Burns, R. M., and Honkala, B. H., eds., Agriculture Handbook No. 654, Forest Service, U.S. Department of Agriculture, Washington D.C., 570–576.

    Google Scholar 

  • Ebell, L. F., and Schmidt, R. L., 1964, Meteorological Factors Affecting Conifer Pollen Dispersal on Vancouver Island, Publication No. 1036, Canadian Department of Forestry, Victoria, British Columbia, 28 p.

    Google Scholar 

  • Fritts, H. C., 1976, Tree Rings and Climate, Academic Press, Inc., New York, New York, 567 p.

    Google Scholar 

  • Fulton, M. R., 1991, A computationally efficient forest succession model: Design and initial tests, For. Ecol. and Manage., 42: 23–34.

    Article  Google Scholar 

  • Fulton, M. R., [In press], A rapid simulation model for vegetation stand dynamics including mixed life forms. In: Solomon, A. M., and Shugart, H. H., Jr., eds., Vegetation

    Google Scholar 

  • Dynamics and Global Change, Chapman and Hall, Inc., New York, New York.

    Google Scholar 

  • Grace, J., and James, J., [In press], The physiology of trees at treeline. In: Alden, J. N., fdum, S., and Mastrantonio, J. L., eds., Forest Development in Cold Climates, Proceedings of an International Symposium, 1991 June 18–24, [Laugarvatn, Iceland], NATO, Plenum, New York, New York.

    Google Scholar 

  • Harris, A. S., 1990, Picea sitchensis (Bong.) Can., Sitka spruce. In: Burns, R. M., and Honkala, B. H., eds., Silvics of North America: Volume 1, Conifers, Agriculture Handbook No. 654, Forest Service, U.S. Department of Agriculture, Washington D.C., 260–267.

    Google Scholar 

  • Jacoby, G. C., and Ulan, L. D., 1981, Review of dendroclimatology in the forest-tundra ecotone of Alaska and Canada, Syllogeus, 33: 97–128.

    Google Scholar 

  • Jaeger, J. W., 1988, Developing Policies for Responding to Climatic Change, Report WCIP1, WMO/TD-No. 225, World Meteorological Organization, Geneva, Switzerland, 53 p.

    Google Scholar 

  • Junttila, O. and Nilsen, J., [In press], Physiological response of forest trees to low temperature and extreme light conditions. In: Alden, J. N., odum, S., and Mastrantonio, J. L., eds., Forest Development in Cold Climates, Proceedings of an International Symposium, 1991 June 18–24, [Laugarvatn, Iceland], NATO, Plenum, New York.

    Google Scholar 

  • Kasanaga, H., and Monsi, M., 1954, On the light transmission of leaves and its meaning for the production of matter in plant communities, Jap. J. Bot., 14: 302–324.

    Google Scholar 

  • Kauppi, P., and Posch, M., 1985, Sensitivity of boreal forests to possible climatic warming, Clim. Change, 7: 45–54.

    Google Scholar 

  • Ker, J. W., and Smith, J. H. G., 1955, Advantages of the parabolic expression of height-diameter relationships, For. Chron., 31: 235–246.

    Google Scholar 

  • Kercher, J. R., and Axelrod, M. C., 1984, A process model of fire ecology and succession in a mixed-conifer forest, Ecology 65: 1725–1742.

    Google Scholar 

  • Kimmins, J. P., and Scoullar, K. A., 1981, FORCYTE—a computer simulation approach to evaluating the effect of whole tree harvesting on nutrient budgets and future forest productivity, Mitt. D. Fortstl, Bundesversuchsanstalt, Wein, 140: 189–205.

    Google Scholar 

  • Kimmins, J. P., and Scoullar, K. A., 1983, FORCYTE-10: A User’s Manual, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, 112 p.

    Google Scholar 

  • Kramer, P. J., and Kozlowski, T. T., 1960, Physiology of Trees, McGraw-Hill Book Co., New York, New York, 642 p.

    Google Scholar 

  • Larcher, W., 1983, Physiological Plant Ecology, 2nd Edition, Springer-Verlag, Berlin, 303 p.

    Google Scholar 

  • Larsen, J.B., [In press], Testing winter desiccation resistance for species and provenance selection at timberlines. In: Alden, J. N., odum, S., and Mastrantonio, J. L., eds., Forest Development in Cold Climates, Proceedings of an International Symposium, 1991 June 18–24, [Laugarvatn, Iceland], NATO, Plenum, New York, New York.

    Google Scholar 

  • Leemans, R., and Prentice, I. C., 1987, Description and simulation of tree-layer composition and size distributions in a primaeval Picea-Pinus forest, Vegetatio, 69: 147–156.

    Article  Google Scholar 

  • Leemans, R., and Prentice, I. C., 1989, FORSKA: A General Forest Succession Model, Report 1989:2, Medd. f. Vaxtbiologiska Institutionen, University of Uppsala, Uppsala, Sweden, 45 p.

    Google Scholar 

  • Leivsson, T.G., [In press], Altitude treeline in the Faroe Islands. In: Alden, J. N., (Mum, S., and Mastrantonio, J. L., eds., Forest Development in Cold Climates, Proceedings of an International Symposium, 1991 June 18–24, [Laugarvatn, Iceland], NATO, Plenum, New York, New York.

    Google Scholar 

  • Lindgren, D., [In press], Provenance selection, testing, and breeding to accelerate adaptation and growth of trees and shrubs at tree limits. In: Alden, J. N., (Mum, S., and Mastrantonio, J. L., eds., Forest Development in Cold Climates, Proceedings of an International Symposium, 1991 June 18–24, [Laugarvatn, Iceland], NATO, Plenum, New York, New York.

    Google Scholar 

  • Lines, R., [In press], Aspects of species and provenance choice at northern tree limits in maritime climates. In: Alden, J. N., odum, S., and Mastrantonio, J. L., eds., Forest Development in Cold Climates, Proceedings of an International Symposium, 1991 June 18–24, [Laugarvatn, Iceland], NATO, Plenum, New York, New York.

    Google Scholar 

  • Loomis, R. S., Williams, W. A., and Duncan, W. G., 1967, Community architecture and the productivity of terrestrial plant communities. In: Greer, F. A., and Army, T. J., eds., Harvesting the Sun, Academic Press, New York, New York, 291–308.

    Google Scholar 

  • MacLean, D. A., 1980, Vulnerability of fir-spruce stand during uncontrolled spruce bud-worm outbreaks: A review and discussion, For. Chron., 56: 213–221.

    Google Scholar 

  • Mielke, D. L., Shugart, H. H., and West, D. C., 1979, User’s Manual for FORAR, a Stand Model for Composition and Growth of Upland Forests of Southern Arkansas, Report ORNL/TM-5767, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 45 p.

    Google Scholar 

  • Mikola, J., [In press], Provenance and individual variation in climatic hardiness of Scots pine, Pinus sylvestris (L.), in Northern Finland. In: Alden, J. N., (Mum, S., and Mastrantonio, J. L., eds., Forest Development in Cold Climates, Proceedings of an International Symposium, 1991 June 18–24, [Laugarvatn, Iceland], NATO, Plenum, New York, New York.

    Google Scholar 

  • Mitchell, H. L., and Chandler, R. F., 1939, The Nitrogen Nutrition and Growth of Certain Deciduous Trees of Northeastern United States, Bulletin No. 11, Black Rock Forest Experiment Station, Cornwall-on-the-Hudson, New York, 94 p.

    Google Scholar 

  • Mitchell, J. F. B., Manabe, S., Tokioka, T., and Meleshko, V., 1990, Equilibrium climate change. In: Houghton, J. T., Jenkins, G. J., and Ephraums, J. J., eds., Climate Change: The IPCC Scientific Assessment, Cambridge University Press, New York, New York, 131–172.

    Google Scholar 

  • Monsi, M., Uchijima, Z., and Oikawa, T., 1973, Structure of foliage canopies and photosynthesis, Ann. Rev. Ecol. and Syst., 4: 301–327.

    Article  Google Scholar 

  • Nikolov, N., and Helmisaari, H., 1991, Silvics of the circumpolar boreal forest tree species. In: Shugart, H. H., Bonan, G. B., and Leemans, R., eds., A Systems Analysis of the Global Boreal Forest, Cambridge University Press, Cambridge, United Kingdom, 13–84.

    Google Scholar 

  • Noble, I. R., Shugart, H. H., and Schauer, J. S., 1980, A Description of BRIND, a Computer Model of Succession and Fire Response of the High Altitude Eucalyptus Forests of the Brindabella Range, Australian Capital Territory, Report ORNL/TM-7041, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 96 p.

    Google Scholar 

  • Ødum, S., 1990, Afforestation experiments reflecting the treeline conditions in Southwest Greenland, Medd. om Groenland, Biosci., 33: 43–61.

    Google Scholar 

  • Pastor, J., and Post, W. M., 1985, Development of a Linked Forest Productivity-Soil Process Model, Report ORNL/TM-9519, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 162 p.

    Google Scholar 

  • Pastor, J., and Post, W. M., 1986, Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles, Biogeochemistry, 2: 3–27.

    Article  Google Scholar 

  • Perry, T. O., Sellers, H. E., and Blanchard, C. O., 1969, Estimation of photosynthetically active radiation under a forest canopy with chlorophyll extracts and from basal area measurements, Ecology, 50: 39–44.

    Article  CAS  Google Scholar 

  • Prentice, I. C., 1986, The design of a forest succession model. In: Forest Dynamics Research in Western and Central Europe, PUDOC, Wageningen, the Netherlands, 253–256.

    Google Scholar 

  • Prentice, I. C., Sykes, M. T., and Cramer, W., 1991, The possible dynamic response of northern forests to global warming, Global Ecology and Biogeography Letters, 1:129–135.

    Google Scholar 

  • Prentice, I. C., Sykes, M. T., and Cramer, W., [In press], A simulation model for the transient effects of climate change on forest landscapes, Ecol. Model.

    Google Scholar 

  • Ritchie, J. C., 1984, Past and Present Vegetation of the Far Northwest of Canada, University of Toronto Press, Toronto, Canada, 251 p.

    Google Scholar 

  • Robertson, A., [In press], Impact of wind on northern forests. In: Alden, J. N., odum, S., and Mastrantonio, J. L., eds., Forest Development in Cold Climates, Proceedings of an International Symposium, 1991 June 18–24, [Laugarvatn, Iceland], NATO, Plenum, New York, New York.

    Google Scholar 

  • Shugart, H. H., Jr., 1984, A Theory of Forest Dynamics, Springer-Verlag, New York, New York, 278 p.

    Book  Google Scholar 

  • Shugart, H. H., Jr., Bonan, G. B., and Leemans, R., eds, 1991, A Systems Analysis of the Global Boreal Forest, Cambridge University Press, Cambridge, United Kingdom, 565 p.

    Google Scholar 

  • Shugart, H. H., Jr., and West, D. C., 1977, Development of an Appalachian deciduous forest succession model and its application to assessment of the impact of the chestnut blight, J. Environ. Manage., 5: 161–179.

    Google Scholar 

  • Shugart, H. H., Jr., and West, D. C., 1979, Size and pattern of simulated forest stands, For. Sci., 25: 120–122.

    Google Scholar 

  • Shugart, H. H., Jr., Mortlock, A. T., Hopkins, M. S., and Burgess, I. P., 1980, A Computer Simulation Model of Ecological Succession in Australian Subtropical Rainforest, Report ORNL/TM-7029, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 48 p.

    Google Scholar 

  • Skre, O., [In press], Growth of mountain birch, Betula pubescens Ehrh., in response to variable temperatures. In: Alden, J. N., (Mum, S., and Mastrantonio, J. L., eds., Forest Development in Cold Climates, Proceedings of an International Symposium, 1991 June 18–24, [Laugarvatn, Iceland], NATO, Plenum, New York, New York.

    Google Scholar 

  • Sollins, P., Reichle, D. E., and Olson, J. S., 1973, Organic matter budget and a model for a southern Appalachian Liriodendron forest, Report EDFB/IBP-73/2, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 150 p.

    Google Scholar 

  • Solomon, A. M., 1986, Transient response of forests to CO2-induced climate change: Simulation experiments in eastern North America, Oecologia, 68: 567–79.

    Article  Google Scholar 

  • Solomon, A. M. 1988, Use of stand models at varying spatial scales to simulate forest responses to environmental changes. In: Seymour, R. S., and Leak, W. B., eds., Proceedings of the New England Growth and Yield Workshop, Miscellaneous Report 325, Maine Agricultural Experiment Station, 46–58.

    Google Scholar 

  • Solomon, A. M., and Bartlein, P. J., [In press], Past and future climate change: Response by mixed deciduous-coniferous forest ecosystems in northern Michigan, Can. J. For. Res.

    Google Scholar 

  • Solomon, A. M., and Shugart, H. H., Jr., 1984, Integrating forest stand simulations with paleoecological records to examine long-term forest dynamics. In: Agren, G. I., ed., State and Change of Forest Ecosystems, Swedish University of Agricultural Science, Uppsala, Sweden, 333–356.

    Google Scholar 

  • Solomon, A. M., Tharp, M. L., West, D. C., Taylor, G. E., Webb, J. M. and Trimble, J. L., 1984, Response of Unmanaged Forests to Carbon Dioxide-Induced Climate Change: Available Information, Initial Tests, and Data Requirements, Report TR-009, U.S. Department of Energy, Washington D.C., 93 p.

    Google Scholar 

  • Solomon, A. M., and Webb, T., III, 1985, Computer-aided reconstruction of late-Quaternary landscape dynamics, Ann. Rev. Ecol. and Syst., 16: 63–84.

    Article  Google Scholar 

  • Solomon, A. M. and West, D. C., 1986, Atmospheric carbon dioxide change: Agent of future forest growth or decline? In: Titus, J. G., ed., Effects of Changes in Stratospheric Ozone and Global Climate, Volume 3: Climate Change, U.S. Environmental Protection Agency, Washington D.C., 23–38.

    Google Scholar 

  • Thornthwaite, C. W., and Mather, J. R., 1957, Instructions and tables for computing potential evapotranspiration and the water balance, Public. in Climatol. 10:183–311.

    Google Scholar 

  • Tigerstedt, P. M.A., [In press], Genetic diversity of tree populations at their arctic limits. In: Alden, J. N., odum, S., and Mastrantonio, J. L., eds., Forest Development in Cold Climates, Proceedings of an International Symposium, 1991 June 18–24, [Laugarvatn, Iceland], NATO, Plenum, New York, New York.

    Google Scholar 

  • Tuhkanen, S., 1980, Climatic parameters and indices in plant geography, Acta Phytogeogr. Suec., Almqvist & Wiksell International, Stockholm, Sweden, 67: 1–110.

    Google Scholar 

  • Tuhkanen, S., 1984, A circumboreal system of climatic-phytogeographical regions, Acta Bot. Fennica, 127: 1–50.

    Google Scholar 

  • Urban, D. L., 1990, A Versatile Model to Simulate Forest Pattern: A User’s Guide to ZELIG Version 1.0, Environmental Sciences Department, University of Virginia, Charlottesville, Virginia, 108 p.

    Google Scholar 

  • Urban, D. L., Bonan, G. B., Smith, T. M., and Shugart, H. H., Jr., 1991, Spatial applications of gap models, For. Ecol. and Manage., 42: 95–110.

    Google Scholar 

  • Wardle, P., [In press], The causes of alpine timberlines: A review of the hypothesis. In: Alden, J. N., (Mum, S., and Mastrantonio, J. L., eds., Forest Development in Cold Climates, Proceedings of an International Symposium, 1991 June 18–24, [Laugarvatn, Iceland], NATO, Plenum, New York, New York.

    Google Scholar 

  • Washington, W. M., 1990, Where’s the heat? The ocean may be the missing sink, Nat. Hist.90(3):66–72.

    Google Scholar 

  • Washington, W. M., and Meehl, G. A., 1989, Climate sensitivity due to increased CO2: Experiments with a coupled atmosphere and ocean general circulation model, Climate Dynamics, 4: 1–38.

    Article  Google Scholar 

  • Watt, A. S., 1947, Pattern and process in the plant community, J. Ecol., 35: 1–22.

    Google Scholar 

  • Weinstein, D. A., Shugart, H. H., Jr., and West, D. C., 1982, The Long-Term Nutrient Retention Properties of Forest Ecosystems: A Simulation Investigation, Report ORNLII’M-8472, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 142 p.

    Google Scholar 

  • Yarie, J., 1986, FORCYTE-10: Extension of a stand-level growth and yield model utilizing nitrogen dynamics to taiga white spruce forests. In: Van Cleve, K., Chapin III, F. S., Flanagan, P. W., Viereck, L. A., and Dyrness, C. T., eds., Forest Ecosystems in the Alaskan Taiga: A Synthesis of Structure and Function, Springer-Verlag, New York, New York, 190–204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Solomon, A.M., West, D.C. (1993). Predicting Afforestation Success During Climatic Warming at the Northern Limit of Forests. In: Alden, J.N., Mastrantonio, J.L., Ødum, S. (eds) Forest Development in Cold Climates. NATO ASI Series, vol 244. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1600-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1600-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1602-0

  • Online ISBN: 978-1-4899-1600-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics