Skip to main content

A Quantitative Analysis of Cavity Formation in Superplastic Yttria-Stabilized Tetragonal Zirconia

  • Chapter
Plastic Deformation of Ceramics

Abstract

Polycrystalline ceramics have the capability of pulling out in tension to elongations of several hundreds of per cent. However, this deformation generally leads to the development and growth of internal cavities within the material. Although internal cavitation is a well documented phenomenon in superplastic metals,1, 2 there is only limited information at present available on the factors influencing the development of cavities during superplastic-like flow in ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.P. Kashyap and A.K. Mukherjee, Cavitation behavior during high temperature deformation of micrograined superplastic materials-a review, Res Mechanica 17:293 (1986).

    Google Scholar 

  2. J. Pilling and N. Ridley, Cavitation in superplastic alloys and the effect of hydrostatic pressure, Res Mechanica 23:31 (1988).

    Google Scholar 

  3. T.G. Nieh and J. Wadsworth, Superplastic behaviour of a fine-grained yttria-stabilized, tetragonal zirconia polycrystal (Y-TZP), Acta Metall. Mater. 38:1121 (1990).

    Article  Google Scholar 

  4. A.H. Chokshi and T.G. Langdon, A model for diffusional cavity growth in superplasticity, Acta Metall. 35:1089(1987).

    Article  Google Scholar 

  5. Y. Ma and T.G. Langdon, A critical assessment of flow and cavity formation in a superplastic yttria-stabilized zirconia, Acta Metall. Mater. 42:2753 (1994).

    Article  Google Scholar 

  6. Y. Ma, X. Zhao and T.G. Langdon, A quantitative study of cavitation in superplasticity, in: “Proceedings of the Fourth International Conference on Creep and Fracture of Engineering Materials and Structures,” B. Wilshire and R.W. Evans, eds., p. 199, The Institute of Metals, London, England (1990).

    Google Scholar 

  7. W.R. Cannon and T.G. Langdon, Creep of ceramics: part 2-An examination of flow mechanisms, J. Mater. Sci. 23:1 (1988).

    Article  ADS  Google Scholar 

  8. T.G. Langdon, Superplastic ceramics-an overview, in: “Superplasticity in Aerospace II,” T.R. McNelley and H.C. Heikkenen, eds., p. 3, The Minerals, Metals and Materials Society, Warrendale, PA (1990).

    Google Scholar 

  9. T.G. Langdon, Superplasticity in metals and ceramics: an examination of flow mechanisms, in: “Proceedings of the Fifth International Conference on Creep and Fracture of Engineering Materials and Structures,” B. Wilshire and R.W. Evans, eds., p. 295, The Institute of Materials, London, England (1993).

    Google Scholar 

  10. A.H. Chokshi and T.G. Langdon, The nucleation and growth of cavities in a superplastic quasi-single phase copper alloy, Acta Metall. Mater. 38:867 (1990).

    Article  Google Scholar 

  11. H. Ishikawa, D.G. Bhat, F.A. Mohamed and T.G. Langdon, Evidence for cavitation in the superplastic Zn-22 Pct Al eutectoid, Metall. Trans. 8A:523 (1977).

    Google Scholar 

  12. D.J. Schissler, A.H. Chokshi, T.G. Nieh and J. Wadsworth, Microstructural aspects of superplastic tensile deformation and cavitation failure in a fine-grained yttria stabilized tetragonal zirconia, Acta Metall. Mater. 39:3227 (1991).

    Article  Google Scholar 

  13. K. Kajihara, Y. Yoshizawa and T. Sakuma, Superplasticity in SiO2-containing tetragonal zirconia polycrystal, Scripta Metall. Mater. 28:559 (1993).

    Article  Google Scholar 

  14. J.W. Hancock, Creep cavitation without a vacancy flux, Metal Sci. 10:319(1976).

    Article  MathSciNet  Google Scholar 

  15. F. Wakai, Non-Newtonian flow and microgram superplasticity in ceramics, in: “Proceedings of the MRS International Meeting on Advanced Materials,” M. Kobayashi and F. Wakai, eds., vol. 7, p. 225, Materials Research Society, Pittsburgh, PA (1989).

    Google Scholar 

  16. M. Nauer and C. Carry, Flow behaviors at high temperature of yttria doped zirconia polycrystals, in: “Euro-Ceramics,” G. de With, R.A. Terpstra and R. Metselaar, eds., vol. 3, p. 3.323, Elsevier Applied Science, London, England (1989).

    Google Scholar 

  17. F. Wakai, Y. Kodama and T. Nagano, Superplasticity of ZrO2 polycrystals, Japan J. Appl. Phys., Ser. 2, “Lattice Defects in Crystals,” 57 (1989).

    Google Scholar 

  18. T. Hermansson, H. Swan and G.L. Dunlop, The role of the intergranular glassy phase in the superplastic deformation of Y-TZP zirconia, in: “Euro-Ceramics,” G. de With, R.A. Terpstra and R. Metselaar, eds., vol. 3, p. 3.329, Elsevier Applied Science, London, England (1989).

    Google Scholar 

  19. T. Stoto, M. Nauer and C. Carry, Influence of residual impurities on phase partitioning and grain growth processes of Y-TZP materials, J. Amer. Ceram. Soc. 74:2615(1991).

    Article  Google Scholar 

  20. A.H. Chokshi, Superplasticity in fine grained ceramics and ceramic composites: current understanding and future prospects, Mater. Sci. Engng A166:119 (1993).

    Article  Google Scholar 

  21. J. Ye, A. Domínguez-Rodríguez, R.E. Medrano and O.A. Ruano, Grain size effect on creep behavior of 3Y-TZP, in: “Third Euro-Ceramics,” P. Durán and J.F. Fernández, eds., vol. 3, p. 525, Faenza Editrice Ibèrica, Castellón de la Plana, Spain (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhou, M., Ma, Y., Langdon, T.G. (1995). A Quantitative Analysis of Cavity Formation in Superplastic Yttria-Stabilized Tetragonal Zirconia. In: Bradt, R.C., Brookes, C.A., Routbort, J.L. (eds) Plastic Deformation of Ceramics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1441-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1441-5_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1443-9

  • Online ISBN: 978-1-4899-1441-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics