Skip to main content

Magnetic X-Ray Dichroism. An Effective way to Study the Spin and Orbital Magnetization in Magnetic Materials

  • Chapter
  • 190 Accesses

Part of the book series: Physics of Atoms and Molecules ((PAMO))

Abstract

Novel spectroscopic tools for magnetic materials have recently emerged from the use of circularly and linearly polarized x-rays. These studies would have been impossible without the use of synchrotron radiation. This radiation emitted by the relativistic electrons confined in an electron storage ring is naturally polarized, i.e. linear in the plane of the electron orbit, and left- and right circularly polarized above and below the plane.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.M. Platzman and N. Tzoar, Phys. Rev. B 2, 3356 (1970).

    Article  ADS  Google Scholar 

  2. F. deBergevin and M. Brunei, Phys. Lett. 39A, 141 (1972).

    ADS  Google Scholar 

  3. M. Blume and D. Gibbs, Phys. Rev. B 37, 1779 (1988).

    Article  ADS  Google Scholar 

  4. G. van der Laan, J. Phys. Condens. Matter 3, 1051 (1991).

    Google Scholar 

  5. G. van der Laan, Phys. Rev. Lett. 66, 2527 (1991).

    Article  ADS  Google Scholar 

  6. J. Bonarski and J. Karp, J. Phys. Condens. Matter 1, 9261 (1989).

    Article  ADS  Google Scholar 

  7. D.P. Siddons, M. Hart, Y. Amemiya and J.B. Hastings, Phys. Rev. Lett. 64, 1967 (1990).

    Article  ADS  Google Scholar 

  8. J.P. Hannon, G.T. Trammell, M. Blume and D. Gibbs, Phys. Rev. Lett. 61, 1245 (1988).

    Article  ADS  Google Scholar 

  9. B.T. Thole and G. van der Laan, Phys. Rev. Lett. 67, 3306 (1991).

    Article  ADS  Google Scholar 

  10. D. Gibbs, D.R. Harshman, E.D. Isaacs, D.B. McWhan, D. Mills, and C. Vettier, Phys. Rev. Lett. 61, 1241 (1988).

    Article  ADS  Google Scholar 

  11. Jin Luo, G. T. Trammell, and J.P. Hannon, Phys. Rev. Lett. 71, 287 (1993).

    Article  ADS  Google Scholar 

  12. P. Strange, PJ. Durham, and B.L. Gyorffy, Phys. Rev. Lett 67, 3590 (1991).

    Article  ADS  Google Scholar 

  13. J.L. Erskine and E.A. Stem, Phys. Rev. B 12, 5016 (1975).

    Article  ADS  Google Scholar 

  14. E. Keller and E.A. Stern, EXAFS and Near Edge Structure III (Springer, Berlin, 1984), p. 507.

    Google Scholar 

  15. B.T. Thole, G. van der Laan and G.A. Sawatzky, Phys. Rev. Lett. 55, 2086 (1985).

    Article  ADS  Google Scholar 

  16. G. van der Laan, B.T. Thole, G.A. Sawatzky, J.B. Goedkoop, J.C. Fuggle, J.M. Esteva, R.C. Karnatak, J.P. Remeika, and H.A. Dabkowska, Phys. Rev. B 34, 6529 (1986).

    Article  ADS  Google Scholar 

  17. J.B. Goedkoop, J.C. Fuggle, B.T. Thole, G. van der Laan, and G.A. Sawatzky, J. Appl. Phys. 64, 5595 (1988).

    Google Scholar 

  18. F. Baudelet, E. Dartyge, A. Fontaine, C. Brouder, G. Krill, J.P. Kappler and M. Piecuch, Phys. Rev. B 43, 5857 (1991).

    Article  ADS  Google Scholar 

  19. G. Schütz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, R. Frahm, and R. Materlik, Phys. Rev. Lett. 58, 737 (1987).

    Article  ADS  Google Scholar 

  20. S.P. Collins, M.J. Cooper, A. Brahmia, D. Laundy, and T. Pitkanen, J. Phys. Condens. Matter 1, 323 (1989).

    Article  ADS  Google Scholar 

  21. H. Ebert, P. Strange, and B.L. Gyorffy, Z. Phys. B 73, 77 (1988).

    Article  ADS  Google Scholar 

  22. H. Ebert and R. Zeller, Phys. Rev. B 42, 2744 (1990).

    Article  ADS  Google Scholar 

  23. P. Carra and M. Altarelli, Phys. Rev. Lett. 64, 1286 (1990).

    Article  ADS  Google Scholar 

  24. C.T. Chen, F. Sette, Y. Ma, and S. Modesti, Phys. Rev. B 42, 7262 (1990).

    Article  ADS  Google Scholar 

  25. C.T. Chen, N.V. Smith, and F. Sette, Phys. Rev. B 43, 6785 (1991).

    Article  ADS  Google Scholar 

  26. T. Jo and G.A. Sawatzky, Phys. Rev. B 43, 8771 (1991).

    Article  ADS  Google Scholar 

  27. G. van der Laan and B.T. Thole, Phys. Rev. Lett. 60, 1977 (1988).

    Article  ADS  Google Scholar 

  28. T. Koide, T. Shidara, H. Fukutani, K. Yamaguchi, A. Fujimori, and S. Kimura, Phys. Rev. B 44, 4697 (1991).

    Article  ADS  Google Scholar 

  29. G. van der Laan and B.T. Thole, Phys. Rev. B 43, 13401 (1991).

    Article  ADS  Google Scholar 

  30. B.T. Thole, P. Carra, F. Sette, and G. van der Laan, Phys. Rev. Lett. 68, 1943 (1992).

    Article  ADS  Google Scholar 

  31. P. Kuiper, B.G. Searle, P. Rudolf, L.H. Tjeng, and C.T. Chen, Phys. Rev. Lett. 70, 1549 (1993).

    Article  ADS  Google Scholar 

  32. M. Sacchi, O. Sakho, and G. Rossi, Phys. Rev. B 43, 1276 (1991).

    Article  ADS  Google Scholar 

  33. F. Sette, C.T. Chen, Y. Ma, S. Modesti, and N.V. Smith, AIP Conf. Proc. No. 215, 787 (1990).

    Article  ADS  Google Scholar 

  34. P. Rudolf, F. Sette, L.H. Tjeng, G. Meigs, and C.T. Chen, J. Magn. Magn. Mat. 109, 109 (1992).

    Article  ADS  Google Scholar 

  35. Ph. Sainctavit, D. Lefebvre, Ch. Cartier dit Moulin, C. Laffon, Ch. Brouder, G. Krill, J. Ph. Schillé, J.P. Kappler, and J. Goulon, J. Appl. Phys. 72, 1985 (1992).

    Article  Google Scholar 

  36. J.B. Goedkoop, B.T. Thole, G. van der Laan, G.A. Sawatzky, F.M.F. de Groot, and J.C. Fuggle, Phys. Rev. B 37, 2086 (1988).

    Article  ADS  Google Scholar 

  37. T. Jo and S. Imada, J. Phys. Soc. Jpn. 59, 3358 (1990).

    Article  ADS  Google Scholar 

  38. H. Ogasawara, A. Kotani, and B.T. Thole, Phys. Rev. B 44, 2169 (1991).

    Article  ADS  Google Scholar 

  39. M.A. Green, Nucl. Instrum. Methods Phys. Res. A 319, 83 (1992).

    Article  ADS  Google Scholar 

  40. G. van der Laan, M. A. Hoyland, M. Surman, C.F.J. Flipse, and B.T. Thole, Phys. Rev. Lett. 69, 3827 (1992).

    Article  ADS  Google Scholar 

  41. H. Krakauer, A J. Freeman, and E. Wimmer, Phys. Rev. B 28, 610 (1983).

    Article  ADS  Google Scholar 

  42. M. Surman, I. Cragg-Hine, J. Singh, B. Bowler, H.A. Padmore, D. Norman, A.L. Johnson, A. Atrei, W.K. Walter, D.A. King, R. Davis, K.G. Purcell, and G. Thornton, Rev. Sci. Instrum. 63, 1341 (1992).

    Article  ADS  Google Scholar 

  43. C.T. Chen, Rev. Sci. Instrum. 63, 1229 (1992).

    Article  ADS  Google Scholar 

  44. A.A. MacDowell, J.B. West, G.N. Greaves, and G. van der Laan, Rev. Sci. Instrum. 59, 843 (1988).

    Article  ADS  Google Scholar 

  45. G. van der Laan and H.A. Padmore, Nucl. Instrum. Method. Phys. Res. A 291,225 (1990).

    Article  ADS  Google Scholar 

  46. A. Smith, unpublished.

    Google Scholar 

  47. D.M. Brink and G.R. Satchler, Angular Momentum (Oxford University Press, London, 1962).

    MATH  Google Scholar 

  48. A.P. Yutsis, I.B. Levinson and V.V. Vanagas, Mathematical Apparatus of the Theory of Angular Momentum (Israel Program for Scientific Translation, Jerusalem, 1962).

    MATH  Google Scholar 

  49. D.A. Varshalovich, A.N. Moskalev, and V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988).

    Google Scholar 

  50. B.T. Thole and G. van der Laan, Phys. Rev. Lett. 70, 2499 (1993).

    Article  ADS  Google Scholar 

  51. G. van der Laan and B.T. Thole, Phys. Rev. Lett. 60, 1977 (1988).

    Article  ADS  Google Scholar 

  52. B.T. Thole and G. van der Laan, Phys. Rev. B 38, 3158 (1988).

    Article  ADS  Google Scholar 

  53. P. Carra, B.T. Thole, M. Altarelli, and X. Wang, Phys. Rev. Lett. 70, 694 (1993).

    Article  ADS  Google Scholar 

  54. C.T. Chen, Y.U. Idzerda, H.J. Lin, N.V. Smith, G. Meigs, E. Chaban, G. Ho, E. Pellegrin, and F. Sette, Phys. Rev. Lett., submitted.

    Google Scholar 

  55. M.B. Stearns, in Magnetic Properties of 3d, 4d, and 5d Elements, Alloys and Compounds Ed. K.H. Hellwege and O. Madelung, Landolt-Bornstein, new Series, Vol. III/19a (Springer-Verlag, Berlin, 1986); and references therein.

    Google Scholar 

  56. D. Bonnenberg, K.A. Hempel, and H.P.J. Wijn, in Magnetic Properties of 3d, 4d, and 5d Elements, Alloys and Compounds Ed. K.H. Hellwege and O. Madelung, Landolt-Bornstein, new Series, Vol. III/19a (Springer-Verlag, Berlin, 1986); and references therein.

    Google Scholar 

  57. G. van der Laan and B.T. Thole, Phys. Rev. B 42, 6670 (1990).

    Article  ADS  Google Scholar 

  58. G. van der Laan, J. Phys. Soc. Jpn. 63, 2059 (1994).

    Article  Google Scholar 

  59. P. Carcia, A. Meinhaldt, and A. Suna, Appl. Phys. Lett. 47, 178 (1985).

    Article  ADS  Google Scholar 

  60. L. Neel, J. Phys. Rad. 15, 225 (1954).

    Article  MATH  Google Scholar 

  61. C.T. Chen, Y.U. Idzerda, H.J. Lin, G. Meigs, A. Chaiken, G.A. Prinz, and G.H. Ho, Phys. Rev. B 48, 642 (1993).

    Article  ADS  Google Scholar 

  62. Y. Wu, J. Stöhr, B.D. Hermsmeier, M. G. Samant, and D. Weller, Phys. Rev. Lett. 69, 2307 (1992).

    Article  ADS  Google Scholar 

  63. C.F.J. Flipse, J.J. de Vries, A. Partridge, WJ.M. de Jonge, G. van der Laan, M. Surman, F.J.A. den Broeder, and M.T. Johnson, to be published.

    Google Scholar 

  64. G.H.O. Daalderop, P.J. Kelly, and F.J.A. den Broeder, Phys. Rev. Lett. 68, 682 (1992).

    Article  ADS  Google Scholar 

  65. M.T. Johnson, J.J. de Vries, N.W.E. McGee, J. van de Stegge, and F.J.A. den Broeder, Phys. Rev. Lett. 69, 3575 (1992).

    Article  ADS  Google Scholar 

  66. F.J.A. den Broeder, H.W. van Kesteren, W. Hoving, and W.B. Zeper, Appl. Phys. Lett. 61, 1468 (1992).

    Article  ADS  Google Scholar 

  67. B.T. Thole and G. van der Laan, Phys. Rev. B 44, 12424 (1991).

    Article  ADS  Google Scholar 

  68. G. van der Laan and B.T. Thole, Phys. Rev. B 48, 210 (1993).

    Article  ADS  Google Scholar 

  69. B.T. Thole and G. van der Laan, Phys. Rev. B 49, 9613 (1994).

    Article  ADS  Google Scholar 

  70. L.H. Tjeng, C.T. Chen, P. Rudolf, G. Meigs, G. van der Laan, and B.T. Thole, Phys. Rev. B 48, 13378 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

van der Laan, G. (1995). Magnetic X-Ray Dichroism. An Effective way to Study the Spin and Orbital Magnetization in Magnetic Materials. In: Kleinpoppen, H., Newell, W.R. (eds) Polarized Electron/Polarized Photon Physics. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1418-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1418-7_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1420-0

  • Online ISBN: 978-1-4899-1418-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics