Skip to main content

Uniform Asymptotic Description of Gaussian Pulse Propagation of Arbitrary Initial Pulse Width in a Linear, Causally Dispersive Medium

  • Chapter
Ultra-Wideband, Short-Pulse Electromagnetics 2

Abstract

Modern asymptotic techniques1–4 have recently been utilized5–9 in order to obtain an approximate analytic evaluation of the classical, exact integral representation of the propagated field due to an input ultrashort, Gaussian-modulated harmonic wave in the mature dispersion region of a single resonance Lorentz medium. A straightforward consideration of the behavior of the classical complex phase function appearing in this integral representation showed7,9 that these asymptotic techniques cannot be applied when the space-time parameter θ′ is less than unity. In order to circumvent this difficulty, the input ultrashort Gaussian envelope must be chosen to be centered around a time that is sufficiently larger than the initial pulse width. It was also shown7–9 that the classical, analytic, nonuniform asymptotic approach to this problem, which was presented in References 5 and 6, is only qualitatively accurate in its description of the dynamical evolution of the propagated field as a result of the use of approximate analytic expressions for the saddle point locations and the derivatives of the classical complex phase function at them10. Although these approximate analytic expressions are adequate for instantaneous rise/fall-time input pulses, they are not of sufficient accuracy for input pulses with an exponentially-varying spectrum and consequently need to be improved using numerical techniques. However, even this improved classical asymptotic approach with numerically determined saddle point locations breaks down for two narrow θ′-ranges when two of the conditions of Olver’s theorem1,2, upon which this approach is based, are violated. In order to overcome this difficulty, the appropriate uniform asymptotic techniques3–4 have subsequently been employed. The accuracy of the classical asymptotic description of ultrashort Gaussian pulse propagation was completely verified7–9 through a comparison with the corresponding results of two different numerical experiments: the first is based upon Hosono’s algorithm11–12 for the numerical inversion of Fourier-Laplace transform-type integrals, while the second is a numerical implementation of the asymptotic method of steepest descents2,13,14.

Currently performing his two year military service.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. W. J. Olver, Why Steepest Descents?, SIAM Rev. 12:228 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  2. F. W. J. Olver. “Asymptotics and Special Functions,” Academic Press, New York and London (1974).

    Google Scholar 

  3. R. A. Handelsman and N. Bleistein, Uniform Asymptotic Expansions of Integrals that Arise in the Analysis of Precursors, Arch. Ration. Mech. Anal. 35:267 (1969).

    MathSciNet  MATH  Google Scholar 

  4. C. Chester, B. Friedman, and F. Ursell, An Extension of the Method of Steepest Descents, Proc. Cambridge Philos. Soc. 53:599 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. K. E. Oughstun and J. E. K. Laurens, Asymptotic Description of Ultrashort Electromagnetic Pulse Propagation in a Linear, Causally Dispersive Medium, Radio Sci. 26:245 (1991).

    Article  ADS  Google Scholar 

  6. K.E. Oughstun, Pulse Propagation in a Linear, Causally Dispersive Medium, Proc. IEEE 79:1379 (1991).

    Article  ADS  Google Scholar 

  7. C. M. Balictsis and K. E. Oughstun, Uniform Asymptotic Description of Ultrashort Gaussian-Pulse Propagation in a Causal, Dispersive Dielectric, Phys. Rev. E, 47:3645 (1993).

    Article  ADS  Google Scholar 

  8. K. E. Oughstun, J. E. K. Laurens, and C. M. Balictsis, Asymptotic description of electromagnetic pulse propagation in a linear dispersive medium, in: “Ultra-Wideband, Short-Pulse Electromagnetics,” H. L. Bertoni, L. Carin, and L. B. Felsen, ed., Plenum Press, New York and London (1993).

    Google Scholar 

  9. C. M. Balictsis. “Gaussian Pulse Propagation in a Causal, Dispersive Dielectric,” Ph.D. Dissertation, University of Vermont, 1994.

    Google Scholar 

  10. K. E. Oughstun. “Propagation of Optical Pulses in Dispersive Media,” Ph.D. Dissertation, University of Rochester, 1978 (Ann Arbor: UMI, 1978).

    Google Scholar 

  11. T. Hosono, in Proceedings of the 1980 International URSI Symposium on Electromagnetic Waves (International Union of Radio Science, Munich, 1980), paper 112, pp. C1-C4.

    Google Scholar 

  12. P. Wyns, D. P. Foty, and K. E. Oughstun, Numerical Analysis of the Precursor Fields in Linear Dispersive Pulse Propagation, J. Opt. Soc. Am. A 6:1421 (1989).

    Article  ADS  Google Scholar 

  13. E. T. Copson. “Asymptotic Expansions,” Cambridge University Press, London (1965).

    Book  MATH  Google Scholar 

  14. S. Shen and K. E. Oughstun, Dispersive Pulse Propagation in a Double-Resonance Lorentz Medium, J. Opt. Soc. Am. B 6:948 (1989).

    ADS  Google Scholar 

  15. L. Brillouin. “Wave Propagation and Group Velocity,” Academic Press, New York (1960).

    MATH  Google Scholar 

  16. C. G. B. Garrett and D. E. McCumber, Propagation of a Gaussian Light Pulse Through an Anomalous Dispersion Medium, Phys. Rev. A 1:305 (1970).

    Article  ADS  Google Scholar 

  17. M. D. Crisp, Propagation of Small-Area Pulses of Coherent Light Through a Resonant Medium, Phys. Rev. A 1:1604 (1970).

    ADS  Google Scholar 

  18. D. B. Trizna and T. A. Weber, Brillouin Revisited: Signal Velocity Definition for Pulse Propagation in a Medium with Resonant Anomalous Dispersion, Radio Sci. 17:1169 (1982).

    Article  ADS  Google Scholar 

  19. N. D. Hoc, I. M. Besieris, and M. E. Sockell, Phase-Space Asymptotic Analysis of Wave Propagation in Homogeneous Dispersive and Dissipative Media, IEEE Trans. Antennas Propag. AP-33:1237 (1985).

    ADS  Google Scholar 

  20. E. Varoquaux, G. A. Williams, and O. Avenel, Pulse Propagation in a Resonant Medium: Application to Sound Waves in Superfluid 3 HeB, Phys. Rev. B 34:7617 (1986).

    ADS  Google Scholar 

  21. I. P. Christov, Generation and propagation of ultrashort optical pulses, in: “Progress in Optics XXIX,” E. Wolf, ed., Elsevier Science Publishers B.V. (1991).

    Google Scholar 

  22. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin. “Optics of Femtosecond Laser Pulses,” Chapter I, American Institute of Physics, New York (1992).

    Google Scholar 

  23. S. Lang. “Complex Analysis,” Springer-Verlag Inc., New York (1985).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Balictsis, C.M., Oughstun, K.E. (1995). Uniform Asymptotic Description of Gaussian Pulse Propagation of Arbitrary Initial Pulse Width in a Linear, Causally Dispersive Medium. In: Carin, L., Felsen, L.B. (eds) Ultra-Wideband, Short-Pulse Electromagnetics 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1394-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1394-4_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1396-8

  • Online ISBN: 978-1-4899-1394-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics