Skip to main content

RREACT: A Distributed Network Restoration Protocol for Rapid Restoration of Active Communication Trunks

  • Chapter
Network Management and Control

Abstract

Commercial telecommunications networks have tight real-time requirements for restoration after a failure. The problem of finding the available restoration paths and reassigning the interrupted traffic within such tight real-time requirements places difficult demands on the restoration protocol employed. This paper reviews several distributed network restoration protocols and presents a new distributed protocol called RREACT, for performing this function with a distributed algorithm which uses no prior network status or topography knowledge and which supports multiple simultaneous link restorations. Simulation results show that this protocol significantly outperforms other existing algorithms based on the Sender-Chooser approach, usually completing the total restoration in well under one second. In addition, enhancements to the basic algorithm are described which help to ensure near-optimal use of network spare channel resources and address such restoration situations where a complete restoration is possible but not achieved due to the poor choice of initial restoration path(s).

This research is supported by MCI with grant #01-80046.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. B. Awerbuch, A. Bar-Noy, and M. Gopal. Approximate distributed bellman-ford algorithms. Proceedings of IEEE INFOCOM, pages 1206-1213, Bal Harbour, April 1991.

    Google Scholar 

  2. J. E. Baker. Distributed Link Restoration With Robust Preplanning. Proceedings of GlobalCom’ 91, pp. 306-311, Dec. 1991.

    Google Scholar 

  3. A. E. Baratz, J. P. Gray, P. E. Green, Jr., J. M. Jaffe, and D. P. Pozefsky. SNA networks of small systems. IEEE Journal on Selected Areas in Communications, SAC-3(3):416–426, May 1985.

    Article  Google Scholar 

  4. J. Bovet. Une amélioration de la methode de Dijkstra pour la recherche d’un plus court dans un réseau. Discrete Applied Math., 13:93–96, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  5. B. A. Carré. An Algebra for network routing problems. Journal Inst. Math. Appl., 7: 273–294, 1971.

    Article  MATH  Google Scholar 

  6. T. H. Cormen, C. E. Leiserson, R. L. Riovest. Introduction to Algorithms. The MIT Press, 1990.

    Google Scholar 

  7. Coan, Bi, et al. Using Distributed Topology Update and Preplanned Configurations to Achieve Trunk Network Survivability. IEEE Trans. on Reliability, 40(3):404–416, October 1991.

    MathSciNet  Google Scholar 

  8. C.-H. E. Chow, J. Bicknell, S. McCaughey, and S. Syed. A Fast Distributed Network Restoration Algorithm. Proceeding of 12th International Phoenix Conference on Computers and Communications, pages 261-267, Scottsdale, Arizona, March 24-26, 1993.

    Google Scholar 

  9. D. K. Doherty, W. D. Hutcheson, and K. K. Raychaudhuri. High capacity digital network management and control. Proceedings of GlobalCom ‘90, pages 301.3.1-301.3.5, San Diego, December 1990.

    Google Scholar 

  10. E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math., 1:269–271, 1959.

    Article  MathSciNet  MATH  Google Scholar 

  11. N. Deo and C.-Y. Pang. Shortest-path algorithms: Taxonomy and annotation. Networks, 14:275–323, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. D. Doverspike and C. D. Pack. Using SONET for Dynamic Bandwidth Management in Local Exchange Network. Proceedings of 5th International Network Planning Symposium, Kobe, Japan, June 1992.

    Google Scholar 

  13. W. D. Grover. The self-healing network: A fast distributed restoration technique for net-works using digital cross-connect machines. Proceedings of GlobalCom ‘87, pages 28.2.1-28.2.6, 1987.

    Google Scholar 

  14. W.D. Grover. SELFHEALING NETWORKS: A Distributed Algorithm for k-shortest link-disjoint paths in a multi-graph with applications in real time network restoration. in Doctoral Dissertation for the Department of Electrical Engineering, University of Alberta, Fall 1989.

    Google Scholar 

  15. A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum-Flow problem. Journal of the Association for Computing Machinery, 35(4):921-940, October 1988.

    Google Scholar 

  16. H. Komine, T. Chujo, T. Ogura, K. Miyazaki, and T. Soejima. A distributed restoration algorithm for multiple-link and node failures of transport networks. Proceedings of GlobalCom ‘90, pages 403.4.1-403.4.5, San Diego, December 1990.

    Google Scholar 

  17. J.M. McQuillan, G. Falk and I. Richer. A review of the development and performance of the ARPANET routing algorithm. IEEE Trans. on Communications, COM-26(12): 1802–1811, December 1978.

    Article  Google Scholar 

  18. T. Mohr and C. Pasche. A parallel shortest path algorithm. Computing, 40:281–292, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  19. J.M. McQuillan, I. Richer and E.C. Rosen. The new routing algorithm for the ARPANET. IEEE Trans. on Communications, COM-28(5):711–719, May 1980.

    Article  Google Scholar 

  20. T. A. Nicholson. Finding the shortest route between two points in a network. Computer J., 9:276–280, 1966.

    Article  Google Scholar 

  21. C. Palmer and F. Hummel, “Restoration in a partitioned multi-bandwidth cross-connect network,” in Proceedings of GlobalCom ‘90, pages 301.7.1-301.7.5, San Diego, December 1990.

    Google Scholar 

  22. M. Schwartz and T. E. Stern. Routing techniques used in computer communications net-works. IEEE Trans. on Communications, COM-28(4):539–552, April 1980.

    Article  Google Scholar 

  23. J. W. Suurballe and R. E. Tarjan. A quick method for finding shortest pairs of disjoint paths. Networks, 14:325–336, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. W. Suurballe. Disjoint paths in a network. Networks, 4:125–145, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  25. D. M. Topkis. Akshortest path algorithm for adaptive routing in communications networks. IEEE Trans. on Communications, 36:855–859, July 1988.

    Article  MathSciNet  MATH  Google Scholar 

  26. J. S. Whalen and J. Kenney. Finding maximal link disjoint paths in a multigraph. Pro-ceedings of GlobalCom ‘90, pages 403.6.1-403.6.5, San Diego, December 1990.

    Google Scholar 

  27. L. A. Wrobel. Disaster Recovery Planning for Telecommunications. Artech House, 1992.

    Google Scholar 

  28. T.-H. Wu. Fiber Network Service Survivability. Artech House, 1992.

    Google Scholar 

  29. Yang, C. H. and S. Hasegawa. FITNESS: Failure Immunization Technology for Network Service Survivability. Proc. of GlobalCom ‘88, pages 47.3.1-47.3.6, November 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chow, C.E., McCaughey, S., Syed, S. (1994). RREACT: A Distributed Network Restoration Protocol for Rapid Restoration of Active Communication Trunks. In: Frisch, I.T., Malek, M., Panwar, S.S. (eds) Network Management and Control. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1298-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1298-5_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1300-5

  • Online ISBN: 978-1-4899-1298-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics