Skip to main content

The Great Inequality in a Hamiltonian Planetary Theory

  • Chapter
From Newton to Chaos

Part of the book series: NATO ASI Series ((NSSB,volume 336))

Abstract

The Jupiter-Saturn 2:5 near-commensurability is analyzed in a fully analytic Hamiltonian planetary theory. Computations for the Sun-Jupiter-Saturn system, extending to the third order of the masses and to the 8th degree in the eccentricities and inclinations, reveal an unexpectedly sensitive dependence of the solution on initial data and its likely nonconvergence. The source of the sensitivity and apparent lack of convergence is this near-commensurability, the so-called great inequality. This indicates that simple averaging, still common in current semi-analytic planetary theories, may not be an adequate technique to obtain information on the long-term dynamics of the Solar System. Preliminary results suggest that these difficulties can be overcome by using resonant normal forms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Applegate, J. H., Douglas, M. R., Gursel, Y., Sussman, G. J. and Wisdom, J., 1986, The outer Solar System for 200 million years, Astron. J. 92: 176

    Article  ADS  Google Scholar 

  • Brouwer, D. and Clemence, G. M., 1961, “Methods of Celestial Mechanics”, Academic Press, Orlando

    Google Scholar 

  • Brouwer, D. and Van Woerkom, A. J. J., 1950, The secular variations of the orbital elements of the principal planets, Astron. P. Amer. Eph. 13 (2): 81

    Google Scholar 

  • Carpino, M., Milani, A., and Nobili, A. M., 1987, Long—term numerical integrations and synthetic theories for the motion of the outer planets, Astron. Astrophys. 181: 182

    ADS  MATH  Google Scholar 

  • Duncan, M. J. and Quinn, T., 1993, The long—term dynamical evolution of the Solar System, Annu. Rev. Astron. Astrophys. 31: 265

    Article  ADS  Google Scholar 

  • Duriez, L., 1979, Approche d’une théorie général planétaire en variables elliptiques héliocentriques, Thèse de doctorat, Lille

    Google Scholar 

  • Henrard, J., 1970, On a perturbation theory using Lie transforms, Celest. Mech. 3: 107

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Knezevic, Z., 1986, Secular variations of the major planets’ orbital elements, Celest. Mech. 38: 123

    Article  ADS  Google Scholar 

  • Laskar, J., 1985, Accurate methods in general planetary theory, Astron. Astrophys. 144: 133

    ADS  MATH  Google Scholar 

  • Laskar, J., 1988, Secular evolution of the Solar System over 10 million years, Astron. Astrophys. 198: 341

    ADS  Google Scholar 

  • Laskar, J., 1990, The chaotic motion of the Solar System: a numerical estimate of the size of the chaotic zones, Icarus 88: 266

    Article  ADS  Google Scholar 

  • Laskar, J., Quinn, T. and Tremaine, S., 1992, Confirmation of resonant structure in the Solar System, Icarus 95: 148

    Article  ADS  Google Scholar 

  • Message, P. J., 1982, Asymptotic series for planetary motion in periodic terms in three dimensions, Celest. Mech. 26: 25

    Article  MathSciNet  ADS  Google Scholar 

  • Message, P. J., 1988, Planetary perturbation theory from Lie series, including resonance and critical arguments’, in “Long—Term Dynamical Behaviour of Natural and Artificial N—body Systems”, A. E. Roy, ed., Kluwer Academic Publ., Dordrecht

    Google Scholar 

  • Quinn, T. Q., Tremaine, S. and Duncan, M., 1991, A three million year integration of the Earth’s orbit, Astron. J., 101: 2287

    Article  ADS  Google Scholar 

  • Sussman, G. J. and Wisdom, J., 1992, Chaotic evolution of the Solar System, Science, 257: 56

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Varadi, F., 1989, Hamiltonian perturbation theory applied to planetary motions, Ph.D. Thesis, University of California, Los Angeles

    Google Scholar 

  • Varadi, F., 1993, Branching solutions and Lie series, Celest. Mech. Dyn. Astron., 57: 517

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Varadi, F. and Ghil, M., 1993a, Hamiltonian planetary theory. Part I: Theoretical preliminaries, submitted to Celest. Mech. Dyn. Astron.

    Google Scholar 

  • Varadi, F. and Ghil, M., 1993b, Hamiltonian planetary theory. Part II: The secular system and numerical results, submitted to Celest. Mech. Dyn. Astron.

    Google Scholar 

  • Wisdom, J. and Holman, M., 1991, Symplectic maps for the n—body problem, Astron. J., 102: 1528

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Varadi, F., Ghil, M., Kaula, W.M. (1995). The Great Inequality in a Hamiltonian Planetary Theory. In: Roy, A.E., Steves, B.A. (eds) From Newton to Chaos. NATO ASI Series, vol 336. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1085-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1085-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1087-5

  • Online ISBN: 978-1-4899-1085-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics