Skip to main content

Part of the book series: Physics of Solids and Liquids ((PSLI))

  • 737 Accesses

Abstract

In Chapter 4 we described the theory of self-trapping of excitions in pure and perfect crystals owing to the exciton-lattice interaction. However, most crystals are neither pure nor perfect. Impurities and structural defects/disorders can settle in during crystal growth and act as trapping centers, thus influencing the energy states and transport properties of excitons. Impurities are also often introduced deliberately in order to change the electronic properties of many nonmetallic solids, and the field of doped semiconductors and insulators has advanced tremendously in the last two decades. It is difficult to cover the subject in any single volume, but in order to study the transport of excitation energy in such solids, it is important to study two particular quantities: (1) the line shape, and (2) the Stokes shift in the luminescence spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  ADS  Google Scholar 

  2. W. Martiensen, J. Phys. Chem. Sol. 2, 257 (1957)

    Article  ADS  Google Scholar 

  3. Y. Toyozawa, Prog. Theoret. Phys. 20, 53 (1956), 27, 89 (1962)

    Article  ADS  Google Scholar 

  4. E. I. Rashba, Fiz. Tver. Tela. 4, 3301 (1962)

    Google Scholar 

  5. A. S. Davydov and E. N. Myasnikov, Phys. Stat. Sol. 20, 153 (1967)

    Article  ADS  Google Scholar 

  6. H. Sumi and Y. Toyozawa, J. Phys. Soc. Jpn 31, 342, (1971)

    Article  ADS  Google Scholar 

  7. J. Klafter and J. Jortner, Chem. Phys. 26, 421 (1977), J. Chem. Phys. 68, 1513 (1978)

    Article  ADS  Google Scholar 

  8. J. Singh, Phys. Rev. B23, 2011 (1981)

    ADS  Google Scholar 

  9. D. P. Craig and L. A. Dissado, Chem. Phys. 14, 1976 (1976).

    Article  Google Scholar 

  10. H. Sher and M. Lax, Phys. Rev. B7, 4491 (1973)

    ADS  Google Scholar 

  11. A. M. Stoneham, Theory of Defects in Solids, Clarendon Press, Oxford (1975)

    Google Scholar 

  12. A. Blumen and R. Silbey, J. Chem. Phys. 69, 3589 (1978)

    Article  ADS  Google Scholar 

  13. J. Singh and A. Thilagam, Chem. Phys. Lett. 134, 600 (1987)

    Article  ADS  Google Scholar 

  14. R. Chert and H. Baessler, Chem. Phys. Lett. 118, 235 (1985)

    Article  ADS  Google Scholar 

  15. J. Klafter and R. Silbey, J. Chem. Phys. 72, 843 (1980), Phys. Rev. Lett. 44, 55 (1980)

    Article  ADS  Google Scholar 

  16. A. Blumen, J. Klafter, B. S. White, and G. Zumofen, Phys. Rev. Lett. 53, 1301 (1984).

    Article  ADS  Google Scholar 

  17. A. S. Ioselevich and E. I. Rashba, JETP Lett. 40, 1153 (1984), Sov. Phys. JETP 61, 1110 (1985).

    ADS  Google Scholar 

  18. E. I. Rashba, in: Excitons (M. D. Sturge and E. I. Rashba, eds.) North-Holland, Amsterdam (1982), p. 544.

    Google Scholar 

  19. A. Matsui, K. Mizuno, N. Tamai, and I. Yamazaki, Chem. Phys. 113, 111 (1987).

    Article  Google Scholar 

  20. G. Zimmerer, in: Excited State Spectroscopy in Solids, Proceedings of the International School of Physics (U.M. Grassano and N. Terzi, eds.), North-Holland, Amsterdam (1987), p. 37.

    Google Scholar 

  21. I. YA. Fugol, Adv. Phys. 27, 1 (1978).

    Article  ADS  Google Scholar 

  22. N. F. Mott and A. M. Stoneham, J. Phys. C10, 3391 (1977).

    ADS  Google Scholar 

  23. D. Varding, J. Becker, L. Frankenstein, B. Peters, M. Runne, A. Schröder, and G. Zimmerer, Low.Temp. Phys. (in Russian) 19, 600 (1993).

    Google Scholar 

  24. C. R. Gochanaur, H. C. Anderson, and M. D. Fayer, J. Chem. Phys. 70, 4254 (1978).

    Article  ADS  Google Scholar 

  25. D. P. Craig, L. A. Dissado, and S. H. Walmsley, Chem. Phys. Lett. 44, 419 (1976).

    Article  ADS  Google Scholar 

  26. J. Singh, Phys. Rev. B33, 2602 (1986).

    ADS  Google Scholar 

  27. K. P. Leletov, E. I. Rashba, and E. F. Sheka, Pisma Zh. Eksp. Teor. Fiz. 29, 184 (1979) [JETP Lett. 29, 165 (1979)].

    Google Scholar 

  28. J. Singh and A. Thilagam, J. Lumin. 40/41, 457 (1988).

    Article  Google Scholar 

  29. J. Singh and A. Thilagam, J. Lumin. 38, 317 (1987).

    Article  Google Scholar 

  30. J. Barrau, M. Heckman, J. Collet, and M. Brousseau, J. Phys. Chem. Sol. 34, 1567 (1973).

    Article  ADS  Google Scholar 

  31. A. A. Lipnik, Sov. Phys. Sol. St. 1, 661 (1960), 2, 1835 (1961), 3, 1683 (1962).

    Google Scholar 

  32. J. Barrau, M. Heckman, and M. Brousseau, J. Phys. Chem. Sol. 34, 381 (1973).

    Article  ADS  Google Scholar 

  33. M. Lax, Phys. Rev. 119, 1502 (1960).

    Article  ADS  Google Scholar 

  34. A. A. Lipnik, Sov. Phys. Tech. Phys. 2, 2575 (1957).

    Google Scholar 

  35. P. J. Dean, R. A. Faulkner, S. Kimura, and M. Ilegems, Phys. Rev. B4, 1926 (1971)

    ADS  Google Scholar 

  36. M. Welkowsky and R. Braunstein, Phys. Rev. B5, 497 (1972).

    ADS  Google Scholar 

  37. H. C. Wolf, Advan. Atom. Mol. Phys. 3, 319 (1967)

    Google Scholar 

  38. P. Avakian and R.E. Merrifield, Mol. Cryst. Liq. Cryst. 5, 37 (1968)

    Article  Google Scholar 

  39. G. Durocher and D. F. Williams, J. Chem. Phys. 51, 1675 (1969)

    Article  ADS  Google Scholar 

  40. M. Grover and R. Silbey, J. Chem. Phys. 54, 4843 (1971).

    Article  ADS  Google Scholar 

  41. R. W. Munn, J. Chem. Phys. 58, 3230 (1973).

    Article  ADS  Google Scholar 

  42. R. Voltz and P. Kottis, in: Localisation and delocalisation in Quantum Chemistry, (O. Chalvet, R. Daudel, S. Diner and J. P. Malrieu, eds.) Vol. II, Part III, Reidel, Dordrecht (1976); ibid., V. Ern and M. Schott; ibid., P. Reineker and H. Haken; ibid., R. Voltz.

    Google Scholar 

  43. W. L. Greer, J. Chem. Phys. 60, 744 (1974); 65, 3510 (1976).

    Article  ADS  Google Scholar 

  44. R. Silbey, Ann. Rev. Phys. Chem. 27, 203 (1976).

    Article  ADS  Google Scholar 

  45. I. Y. Fugol, Adv. Phys. 27, 1 (1978).

    Article  ADS  Google Scholar 

  46. O. H. LeBlanc Jr., J. Chem. Phys. 35, 1275 (1961)

    Article  ADS  Google Scholar 

  47. J. I. Katz, S. A. Rice, S. Choi, and J. Jortner, J. Chem. Phys. 39, 1683 (1963)

    Article  ADS  Google Scholar 

  48. L. Friedman, Phys. Rev. A133, 1668 (1964)

    Article  ADS  Google Scholar 

  49. R. Silbey, J. Jortner, and S. A. Rice, J. Chem. Phys. 42, 1515 (1965).

    Article  ADS  Google Scholar 

  50. P. T. Landsberg, in: Handbook on Semiconductors Vol. I, Band Theory and Transport Properties (W. Paul, ed.) North-Holland, Amsterdam (1978).

    Google Scholar 

  51. F. Culik, Czech. J. Phys. B16, 194 (1966).

    Article  ADS  Google Scholar 

  52. P. I. Khadzhi, Sov. Phys. Semicond. 2, 190 (1968).

    Google Scholar 

  53. S. Choi and S. A. Rice, J. Chem. Phys. 38, 366 (1963).

    Article  ADS  Google Scholar 

  54. J. Singh, J. Phys. C: Sol. St. Phys. 11, 3245 (1980).

    Google Scholar 

  55. D. C. Northrop and P. Simpson, Proc. Roy. Soc. (London) A244, 377 (1958)

    ADS  Google Scholar 

  56. M. Silver, D. Olness, Swicord, and R. C. Jarnagin, Phys. Rev. Lett. 10, 12 (1963).

    Article  ADS  Google Scholar 

  57. J. B. Webb and D. F. Williams, J. Phys. C: Sol. St. Phys. 11, 3245 (1978).

    Article  ADS  Google Scholar 

  58. O. H. LeBlanc Jr., in: Physics and Chemistry of the Organic Solid State, (D. Fox, M. M. Labes and A. Wessberger, eds.) Vol. III, Ch. 3, Interscience, New York (1967).

    Google Scholar 

  59. R. G. Kepler, J. Caris, P. Avakian, and E. Abramson, Phys. Rev. Lett. 10, 400 (1963).

    Article  ADS  Google Scholar 

  60. J. L. Hall, D. A. Jennings, and R. M. McClintock, Phys. Rev. Lett. 11, 364 (1963).

    Article  ADS  Google Scholar 

  61. C. E. Swenberg and W. T. Stacy, Chem. Phys. Lett. 2, 327 (1968).

    Article  ADS  Google Scholar 

  62. N. Geacintov, M. Pope, and F. Vogel, Phys. Rev. Lett. 22, 593 (1969).

    Article  ADS  Google Scholar 

  63. R. E. Merrifield, P. Avakian, and R. P. Groff, Chem. Phys. Lett. 3, 155 (1969).

    Article  ADS  Google Scholar 

  64. R. P. Groff, P. Avakian, and R. E. Merrifield, Phys. Rev. B1, 815 (1970).

    ADS  Google Scholar 

  65. Y. T. Omkiewicz, R. P. Groff, and P. Avakian, J. Chem. Phys. 54, 4504 (1971).

    Article  ADS  Google Scholar 

  66. J. Jortner, S. A. Rice, J. L. Katz, and S. Choi, J. Chem. Phys. 42, 309 (1965).

    Article  ADS  Google Scholar 

  67. C. E. Swenberg, J. Chem. Phys. 51, 1753 (1969).

    Article  ADS  Google Scholar 

  68. M. Trlifaj, Czech. J. Phys. B22, 832 (1972).

    Article  ADS  Google Scholar 

  69. J. Singh, J. Phys. Chem. Sol. 30, 1207 (1978).

    Article  ADS  Google Scholar 

  70. G. Klein, R. Voltz, and M. Schott, Chem. Phys. Lett. 19, 391(1973)

    Article  ADS  Google Scholar 

  71. W. M. Moller and M. Pope, J. Chem. Phys. 59, 2760 (1973)

    Article  ADS  Google Scholar 

  72. C. E. Swenberg, M. A. Ratner, and N. E. Geacintov J. Chem. Phys. 60, 2152 (1974).

    Article  ADS  Google Scholar 

  73. G. Vaubel and H. Baessler, Mol. Cryst. 15, 15 (1971)

    Article  Google Scholar 

  74. G. Klein, R. Voltz, and M. Schott, Chem. Phys. Lett. 16, 340 (1972).

    Article  ADS  Google Scholar 

  75. R. Engelman and J. Jortner, Mol. Phys. 18, 145 (1970).

    Article  ADS  Google Scholar 

  76. J. B. Birks, Photophysics of Aromatic Molecules, Wiley, New York (1967).

    Google Scholar 

  77. R. R. Alfano, S. L. Shapiro, and M. Pope, Opt. Comm. 9, 388 (1973).

    Article  ADS  Google Scholar 

  78. M. Pope and J. Burgos, Mol. Cryst. 1, 395 (1966).

    Article  Google Scholar 

  79. P. Avakian and R. E. Merrifield, Mol. Cryst. 5, 37 (1968).

    Article  Google Scholar 

  80. S. Singh, W. J. Jones, W. Siebrand, B. P. Stoicheff, and W. G. Schneider, J. Chem. Phys. 42, 330 (1965).

    Article  ADS  Google Scholar 

  81. T. A. King and H. G. Siefert, in: The Triplet State (A. B. Zahlan ed.), Proceedings of an International Conference held at the American University, Beirut, Lebanon, February 14-19, 1967) (Cambridge University Press, Cambridge (1967), p. 329.

    Google Scholar 

  82. P. Avakian, E. Abramson, R. G. Kepler, and J. C. Carris, J. Chem. Phys. 39, 1127(1963).

    Article  ADS  Google Scholar 

  83. W. Helfrich and W. G. SchneiderJr., J. Chem. Phys. 44, 2902 (1966).

    Article  ADS  Google Scholar 

  84. N. Hirota and C. A. Hutchinson, Jr., J. Chem. Phys. 42, 2869 (1965).

    Article  ADS  Google Scholar 

  85. M. Pope, J. Burgos, and N. Wotherspoon, Chem. Phys. Lett. 12, 140 (1971).

    Article  ADS  Google Scholar 

  86. N. Wakayama and D. F. Williams, J. Chem. Phys. 57, 1770 (1972).

    Article  ADS  Google Scholar 

  87. L. Peter and G. Vaubel, Phys. Stat. Sol(b) 48, 587 (1971).

    Article  ADS  Google Scholar 

  88. A. Many, J. Levingson, and I. Teuchner, Mol. Cryst. Liq. Cryst. 5, 121 (1968).

    Google Scholar 

  89. D. Haarer and G. Castro, Chem. Phys. Lett. 12, 277 (1971).

    Article  ADS  Google Scholar 

  90. P. Schlotter and H. Baessler, Chem. Phys. Lett. 24, 450 (1974).

    Article  ADS  Google Scholar 

  91. V. M. Agranovich and A. A. Zakhidov, Chem. Phys. Lett. 68, 86 (1979).

    Article  ADS  Google Scholar 

  92. F. I. Dalidchik and V. Z. Slonim, JETP Lett. 31, 112 (1980).

    ADS  Google Scholar 

  93. J. Singh, Phys. Stat. Sol(b) 103, 423 (1981).

    Article  ADS  Google Scholar 

  94. J. Singh, J. Chem. Phys. 75, 4603 (1981).

    Article  ADS  Google Scholar 

  95. R. M. Hochstrasser, Accts. Chem. Res. 6, 263 (1973).

    Article  Google Scholar 

  96. J. Singh and P. T. Landsberg, J. Phys. C: Sol St. Phys. 9, 3627 (1976).

    Article  ADS  Google Scholar 

  97. M. Trlifaj, Czech. J. Phys. B15, 780 (1965).

    Article  ADS  Google Scholar 

  98. M. Trlifaj, Czech. J. Phys. B14, 227 (1964).

    Article  ADS  Google Scholar 

  99. C. Richard and M. Dugue, Phys. Stat. Sol(b) 50, 263 (1972).

    Article  ADS  Google Scholar 

  100. T. Harada and K. Morigaki, J. Phys. Soc. Jpn 32, 172 (1972).

    Article  ADS  Google Scholar 

  101. T. Kobayashi and S. Nagakura, Mol. Phys. 24, 695 (1972).

    Article  ADS  Google Scholar 

  102. Z. Khas, Czech. J. Phys. B15, 568 (1965).

    Article  ADS  Google Scholar 

  103. R. Fuchs, Phys. Rev. 111, 387 (1958).

    Article  ADS  Google Scholar 

  104. J. Singh and H. Baessler, Phys. Stat. Sol.(b) 62, 147 (1974).

    Article  ADS  Google Scholar 

  105. H. Killesreiter and H. Baessler, Phys. Stat. Sol.(b) 51, 657 (1972)

    Article  ADS  Google Scholar 

  106. Chem. Phys. Lett. 11, 411 (1971).

    Google Scholar 

  107. S. Choi, Phys. Rev. Lett. 19, 358 (1968).

    Article  ADS  Google Scholar 

  108. A. Bergman, M. Levine, and J. Jortner, Phys. Rev. Lett. 18, 593 (1967).

    Article  ADS  Google Scholar 

  109. J. Jortner, Phys. Rev. Lett. 20, 244 (1968).

    Article  ADS  Google Scholar 

  110. K. Lochner, H. Baessler, L. Sebastian, G. Weiser, G. Wagner, and V. Enkelmann, Chem. Phys. Lett. 78, 366 (1981).

    Article  ADS  Google Scholar 

  111. J. J. Hopfield, Phys. Rev. 112, 1555 (1958).

    Article  ADS  MATH  Google Scholar 

  112. S. I. Pekar, Sov. Phys. JETP 34, 813 (1958).

    MathSciNet  Google Scholar 

  113. B. Fischer and J. Lagois, in: Excitons, (K. Cho, ed.) Topics in Current Physics, Vol. 14 (Springer-Verlag, Heidelberg (1979) p. 183

    Google Scholar 

  114. E. Burstein and F. De Martini (eds.), Polaritons, Proceedings of the First Taormina Research Conference on the Structure of Matter, Pergamon, New York (1974).

    Google Scholar 

  115. H. Haken, Quantum Field Theory of Solids, North-Holland, Amsterdam (1976).

    Google Scholar 

  116. L. Esaki and R. Tsu, IBM J. Res. Rev. 14, 61 (1970).

    Article  Google Scholar 

  117. A. C. Gossard, Institute of Physics Conference Series No 69, ESSDERC/ SSSDT, Canterbury (1983), p. 1.

    Google Scholar 

  118. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures, (1988).

    Google Scholar 

  119. R. Dingle, Device and Circuit Applications of III-IV Semiconductor Super-lattices and Modulation Doping, Academic, New York (1985).

    Google Scholar 

  120. L. Esaki, J. de Phys. C48, 5 (1987).

    Google Scholar 

  121. M. Jaros, Physics and Applications of Semiconductor Microstructures, Oxford University Press, Oxford (1989).

    Google Scholar 

  122. T. Takagahara, Phys. Rev. B31, 6552 (1985).

    ADS  Google Scholar 

  123. A. Thilagam and J. Singh, J. Lumin. 55, 11 (1993); Phys. Rev. B48, 4636 (1993).

    Google Scholar 

  124. A. Thilagam, Ph.D. Thesis, Dynamics of Excitons in Semiconductor Heterostructures, Physics, Northern Territory University, 1993.

    Google Scholar 

  125. W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegman, Phys. Rev. Lett. 54, 1306 (1985).

    Article  ADS  Google Scholar 

  126. A. Thilagam and J. Singh, Phys. Rev. B49, 13583 (1994).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Singh, J. (1994). Exciton Dynamics. In: Excitation Energy Transfer Processes in Condensed Matter. Physics of Solids and Liquids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0996-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0996-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0998-5

  • Online ISBN: 978-1-4899-0996-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics