Skip to main content

Molecular Behavior of Water in a Flour-Water Baked Model System

  • Chapter
Water Relationships in Foods

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 302))

Abstract

The molecular behavior of water in complex food systems, via bonding and solvation reactions with low molecular weight solutes or high molecular weight macromolecules, is intimately linked with both the palatability and storage stability of those systems. Due to the difficulty in interpreting data derived from multicomponent finished food products, water behavior in a baked flour-water “matzo” model system was studied. Water behavior was assessed from high resolution [1H] nuclear magnetic resonance (NMR) spin-spin relaxation studies and differential scanning calorimetric (DSC) measurements of unfreezable water content. The unfreezable water capacity of “matzo” model crackers, as measured by DSC, ranged from ca. 24–30% (w/w). These results were corroborated by NMR data. Only one exponent (<0.46 msec>) is required to fit spin-echo evolution curves below a total moisture content of ca. 20% (w/w), whereas two exponents (<0.46> and 1.6 msec) are observed when the moisture content exceeds 20% (w/w). Expert sensory texture assessments parallel unfreezable (= total) water contents between 2.9% (w/w) and 20.1% (w/w). This relationship may be explained by the known tendency for water to plasticize biological polymers, e.g. wheat starch and proteins, and to render these macromolecules incrementally more mobile with increasing water concentration. The similarities (if any) between water of plasticization, immobile water, and “bound” water are discussed, in terms of theoretical physicochemical “states” of water and the various techniques utilized to assess (define) those “states”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Eads, personnal communication (1989).

    Google Scholar 

  2. R. Lumry, Some recent ideas about the nature of the interactions between proteins and liquid water. J. Food Sci. 38:7440 (1973).

    Article  Google Scholar 

  3. H. Levine and L. Slade, A polymer physico-chemical approach to the study of commercial starch hydrolysis products (SHPs), Carbohydr. Polym. 6:213 (1986).

    Article  CAS  Google Scholar 

  4. J.W. Finley and P. Given, Jr., Technical necessity of antioxidants in the food industry, Food Chem. Toxic. 24:999 (1986).

    Article  CAS  Google Scholar 

  5. R.J. Davies and T. Webb, Calorimetric determination of freezable water in dough, Chem. Ind. 16:1138 (1969).

    Google Scholar 

  6. W. Bushuk and V.K. Mehrotra, Studies of water binding by differential thermal analysis. II. Dough studies using the melting mode, Cereal Chem. 54:320 (1977).

    CAS  Google Scholar 

  7. L. Slade, H. Levine, and J.W. Finley, Protein-water interactions: water as a plasticizer of gluten and other protein polymers, in: “Protein Quality and the Effects of Processing,” R.D. Phillips and J.W. Finley, eds., Marcel Dekker, New York (1989).

    Google Scholar 

  8. H.K. Leung and M.P. Steinberg, Water binding of food constituents as determined by NMR, freezing, sorption and dehydration, J. Food. Sci. 44:1212 (1979).

    Article  CAS  Google Scholar 

  9. J.R. Grigera and S. Mascarenhas, A model for NMR, dielectric relaxation and electret behavior of bound water in proteins, Stud. Biophys. (Berlin) 73:19 (1978).

    CAS  Google Scholar 

  10. P.-H. Yang and J.A. Rupley, Protein-water interactions. Heat capacity of the lysozyme-water molecules, Biochem. 18:2654 (1979).

    Article  CAS  Google Scholar 

  11. S. Bone and R. Pethig, Dielectric properties of biopolymers, Dielectr. Mater. Meas. Appl. 239:152 (1984).

    CAS  Google Scholar 

  12. A.-M. Hermansson, Water-and fat-holding, in: “Functional Properties of Food Macromolecules,” J.R. Mitchell and D.A. Ledward, eds., Elsevier, London (1986).

    Google Scholar 

  13. E. Brosio, G. Altobelli, and A. DiNola, A pulsed-low-resolution NMR study of water-binding to milk proteins, J. Food Technol. 19:103 (1984).

    Article  Google Scholar 

  14. N. Randall and R.T. Roberts, Effect of humectants on the state of water in meat: studies using pulsed NMR, Leatherhead Food R.A. Report 481:11 (1984).

    Google Scholar 

  15. G.N. Ling and R.C. Murphy, NMR relaxation of water protons under the influence of proteins and other linear polymers, Physiol. Chem. Phys. 14:209 (1982).

    CAS  Google Scholar 

  16. S.H. Koenig, R.D. Brown, and C.F. Brewer, Proton and deuteron NMR dispersion studies of Ca++-Mn++-concanavalin A: evidence for two classes of exchanging water molecules, Biochem. 24:4980 (1985).

    Article  CAS  Google Scholar 

  17. B. Halle, T. Andersson, S. Forsen, and B. Lindman, Protein hydration from water oxygen-17 magnetic relaxation, J. Am. Che. Soc. 103:500 (1981).

    Article  CAS  Google Scholar 

  18. H.K. Leung, J.A. Magnuson, and B.L. Bruinsma, Water binding of wheat flour doughs and breads as studied by deuteron relaxation, J. Food Sci. 48:95 (1983).

    Article  CAS  Google Scholar 

  19. S.J. Richardson, F.C. Baianu, and M.P. Steinberg, Mobility of water in wheat flour suspensions as studied by proton and 017 NMR, J. Agric. Food Chem. 34:17 (1986).

    Article  CAS  Google Scholar 

  20. P. Given, H.E. Arciszewski, J.D. Ferenz, and J.W. Finley, Molecular behavior of water in a flour-water baked model system, at ACS 197th Annual Meeting, Dallas, TX, abs. 96, April 9–14 (1989).

    Google Scholar 

  21. N. Ishida, H. Kano, T. Kobayashi, and T. Yshida, Analysis of the physical state of water in soybean seeds by NMR, Agric. Biol. Chem. 52:2777 (1988).

    Article  CAS  Google Scholar 

  22. S. Noguchi, F. Nakazawa, M. Takada, and J. Takahashi, Bound water of six kinds of sugar determined by pulse NMR and absorption isotherms, Kaseigaku Zasshi 37:347 (1986).

    CAS  Google Scholar 

  23. S.J. Richardson, I.C. Baianu, and M.P. Steinberg, Mobility of water in sucrose solutions determined by deuterium and 017 NMR measurements, J. Food Sci. 52:806 (1987).

    Article  CAS  Google Scholar 

  24. H.K. Leung, M.P. Steinberg, L.S. Wei, and A.I. Nelson, Water binding of macromolecules determined by pulsed NMR, J. Food Sci. 41:297 (1976).

    Article  CAS  Google Scholar 

  25. J. Mousseri, M.P. Steinberg, A.I. Nelson, and L.S. Wei, Bound water capacity of corn starch and its derivatives by NMR, J. Food Sci. 39:114 (1974).

    Article  CAS  Google Scholar 

  26. S.J. Richardson, I.C. Baianu, and M.P. Steinberg, Mobility of water in corn starch suspensions determined by NMR, Starch 39:79 (1987).

    Article  CAS  Google Scholar 

  27. S.J. Richardson, M.P. Steinberg, R.E. DeVor, and J.W. Sutherland, Characterization of the 017 NMR water mobility response surface, J. Food Sci. 52:189 (1987).

    Article  CAS  Google Scholar 

  28. S.J. Richardson, I.C. Baianu, and M.P. Steinberg, Mobility of water in starch powders determined by NMR, Starch 39:198 (1987).

    Article  CAS  Google Scholar 

  29. S.J. Richardson, I.C. Baianu, and M.P. Steinberg, Mobility of water in starch-sucrose systems determined by deuterium and 017 NMR, Starch 39:302 (1987).

    Article  CAS  Google Scholar 

  30. S. Wynne-Jones and J.M.V. Blanshard, Hydration studies of wheat starch, amylopectin, amylose gels and bread by proton magnetic resonance, Carbohydr. Polym. 6:289 (1986).

    Article  CAS  Google Scholar 

  31. S.J. Richardson and M.P. Steinberg, Applications of NMR, in: “Water Activity: Theory and Applications to Foods,” L.G. Rockland and L.B. Beuchat, eds., Marcel Dekker, New York (1987).

    Google Scholar 

  32. U. Strauss, personnal communication (1989).

    Google Scholar 

  33. A.T. Hagler, H.A. Scheraga, and G. Némethy, Current status of the water-structure problem: applications to proteins, Ann. N.Y. Acad. Sci. 204:51 (1973).

    Article  CAS  Google Scholar 

  34. S.J. Richardson, I.C. Baianu, and M.P. Steinberg, Relationship between 017 NMR and rheological characteristics of wheat flour suspensions, J. Food Sci. 50:1148 (1985).

    Article  Google Scholar 

  35. P. Lambelet, R. Berrocal, C. Desarzens, I. Froehlicher, and F. Ducret, Pulsed low resolution NMR investigation of protein sols and gels, J. Food Sci. 53:943 (1988).

    Article  Google Scholar 

  36. L. Slade and H. Levine, Recent advances in starch retrogradation, in: “Industrial Polysaccharides,” S.S. Stivala, V. Crescenzi, and I.C.M. Dea, eds., Gordon and Breach Science, New York (1987).

    Google Scholar 

  37. T.J. Maurice, L. Slade, R.R. Sirett, and C.M. Page, Polysaccharide-water interactions — thermal behavior of rice starch, in: “Properties of Water in Foods,” D. Simatos and J.L. Multon, eds., Martinus Nijhoff, Dordrecht (1985).

    Google Scholar 

  38. J. Longton, G.A. LeGrys, and H. Wycombe, Differential scanning calorimetric studies on the crystallinity of aging wheat starch gels, Starch 33:410 (1981).

    Article  CAS  Google Scholar 

  39. K.J. Zeleznak and R.C. Hoseney, The role of water in the retrogradation of wheat starch gels and bread crumb, Cereal Chem. 63:407 (1986).

    CAS  Google Scholar 

  40. D.R. Lineback and E. Wongsrikasem, Gelatinization of starch in baked products, J. Food Sci. 45:71 (1980).

    Article  CAS  Google Scholar 

  41. R.C. Hoseney, W.A. Atwell, and D.R. Lineback, Scanning electron microscopy of starch isolated from baked products, Cereal Foods World 22:56 (1977).

    Google Scholar 

  42. K. Ghiasi, R.C. Hoseney, and E. Varriano-Marsten, Gelatinization of wheat starch. III. Comparison by DSC and light microscopy, Cereal Chem. 59:258 (1982).

    Google Scholar 

  43. R.C. Hoseney, Differential scanning calorimetry of starch, J. Food Qual. 6:169 (1984).

    Article  CAS  Google Scholar 

  44. C.G. Biliaderis, T.J. Maurice, and J.R. Vose, Starch gelatinization phenomena studied by DSC, J. Food Sci. 45:1669 (1980).

    Article  Google Scholar 

  45. R.H. Marchessault, M.G. Taylor, C.A. Fyfe, and R.P. Veregin, Solid state 13C-CP MAS NMR of starches, Carbohvdr. Res. 144:C1 (1985).

    Article  CAS  Google Scholar 

  46. F. Franks, Solvation interactions of proteins in solution, Phil. Trans. R. Soc. Lond. B278:89 (1977).

    Article  CAS  Google Scholar 

  47. S. Mashimo, S. Kuwabara, S. Yagihara, and K. Higasi, Dielectric relaxation time and structure of bound water in biological materials, J. Phvs. Chem. 91:6337 (1987).

    Article  CAS  Google Scholar 

  48. E.H. Grant, Molecular interpretation of the dielectric behavior of biological material, NATO Adv. Study Inst. Ser. A44:178 (1983).

    Google Scholar 

  49. D. Simatos and M. Karel, Characterization of the condition of water in foods: physico-chemical aspects, in: “Food Preservation by Moisture Control,” C.C. Seow, ed., Elsevier Applied Science, London (1988).

    Google Scholar 

  50. M. Karel and N.D. Heidelbaugh, Recent research and development in the field of low-moisture and intermediate-moisture foods, CRC Crit. Rev. Food Technol. February:329 (1973).

    Google Scholar 

  51. B. Halle and H. Wennesström, Interpretation of magnetic resonance data from water nuclei in heterogeneous systems, J. Chem. Phys. 75:1928 (1981).

    Article  CAS  Google Scholar 

  52. F. Franks, Complex aqueous systems at subzero temperatures, in: “Properties of Water in Foods,” D. Simatos and J.L. Multon, eds., Martinus Nijhoff, Dordrecht (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Given, P.S. (1991). Molecular Behavior of Water in a Flour-Water Baked Model System. In: Levine, H., Slade, L. (eds) Water Relationships in Foods. Advances in Experimental Medicine and Biology, vol 302. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0664-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0664-9_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0666-3

  • Online ISBN: 978-1-4899-0664-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics