Skip to main content

Design of Ceramic Materials for Chemical Sensors with Intelligent Properties

  • Chapter
Polymers and Other Advanced Materials

Abstract

Research in the field of materials has always been oriented towards the improvement of their performance and of their reliability. Recently, however, materials R&D has taken a new direction, searching for novel functions.1 The development of materials with intelligent functions is a key point for the development of novel technologies, which should be environment and user friendly.2 Intelligent materials are those materials which are able to modify and to adapt themselves to external changes, mimicking the behaviour of living organisms.3 One class of materials which has outstanding potential for application as intelligent materials is ceramics, because they may have completely different properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Yanagida, Intelligent materials — a new frontier, Angew. Chem. 100:1443 (1988).

    Article  CAS  Google Scholar 

  2. H. Yanagida, Intelligent ceramics, Ferro electrics 102:251 (1990).

    Article  CAS  Google Scholar 

  3. CA. Rogers, From the editor, J. Intelligent Mater. Systems and Structures 1:3 (1990).

    Article  Google Scholar 

  4. R.E. Newnham and G.R. Ruschau, Smart electroceramics, J. Am. Ceram. Soc. 74:463 (1991).

    Article  CAS  Google Scholar 

  5. N. Yamazoe and N. Miura, Environmental gas sensing, in: “Techn. Digest of the 7th Intern. Conf. on Solid-State Sensors and Actuators (Transducers 93),” Yokohama, Japan (1993).

    Google Scholar 

  6. T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, A new detector for gaseous components using semiconductive thin films, Anal. Chem. 34:1502 (1962).

    Article  CAS  Google Scholar 

  7. J.G. Fagan and V.R.W. Amarakoon, Reliability and reproducibility of ceramic sensors: part III, humidity sensors, Am. Ceram. Soc. Bull. 72 [3]: 119 (1993).

    CAS  Google Scholar 

  8. E. Traversa, Ceramic sensors for humidity detection: the state-of-the-art and future developments, Sensors and Actuators B 23:135 (1995).

    Article  CAS  Google Scholar 

  9. B.M. Kulwicki, Humidity sensors, J. Am. Ceram. Soc. 74:697 (1991).

    Article  CAS  Google Scholar 

  10. N. Yamazoe, New approaches for improving semiconductor gas sensors, Sensors and Actuators B 5:7 (1991).

    Article  CAS  Google Scholar 

  11. K.D. Schierbaum, Engineering of oxide surfaces and metal/oxide interfaces for chemical sensors: recent trends. Sensors and Actuators B in press (1995).

    Google Scholar 

  12. Y. Nakamura, T. Tsurutani, M. Miyayama, O. Okada, K. Koumoto, and H. Yanagida, The detection of carbon monoxide by the oxide-semiconductor heterocontacts, J. Chem. Soc. Jpn. 1987:477 (1987).

    Google Scholar 

  13. K. Kawakami and H. Yanagida, Effects of water vapor on the electrical conductivity of the interface of semiconductor ceramic-ceramic contacts, J. Ceram. Soc. Jpn. 87:112 (1979).

    CAS  Google Scholar 

  14. Y. Nakamura, H. Yoshioka, M. Miyayama, H. Yanagida, T. Tsurutani, and Y. Nakamura, Selective CO gas sensing mechanism with CuO/ZnO heterocontact, J. Electrochem. Soc. 137:940 (1990).

    Article  CAS  Google Scholar 

  15. E. Traversa, M. Miyayama, and H. Yanagida, Gas sensitivity of ZnO/La2CuO4 heterocontacts, Sensors and Actuators B 17:257 (1994).

    Article  CAS  Google Scholar 

  16. E. Traversa and A. Bearzotti, Humidity sensitive electrical properties of dense ZnO with non-ohmic electrode, J. Ceram. Soc. Jpn. 103:11 (1995).

    Article  CAS  Google Scholar 

  17. G. Montesperelli, A. Pumo, E. Traversa, G. Gusmano, A. Bearzotti, A. Montenero, and G. Gnappi, Solgel processed TiO2-based thin film as innovative humidity sensors, Sensors and Actuators B in press (1995).

    Google Scholar 

  18. E. Traversa, A. Bianco, G. Montesperelli, G. Gusmano, A. Bearzotti, M. Miyayama, and H. Yanagida, ZnO/La2CuO4 hetero-contacts as humidity sensors, in: “Ferroic Materials: Design, Preparation, and Characteristics,” A.S. Bhalla, K.M. Nair, I.K. Lloyd, H. Yanagida, and D.A. Payne, eds., The Am. Ceram. Soc, Westerville (1994).

    Google Scholar 

  19. Y. Nakamura, M. Ikejiri, M. Miyayama, K. Koumoto, and H. Yanagida, The current-voltage characteristics of CuO/ZnO heterojunctions, J. Chem. Soc. Jpn. 1985:1154 (1985).

    Google Scholar 

  20. Y. Ushio, M. Miyayama, and H. Yanagida, Effects of interface states on gas sensing properties of a CuO/ZnO thin film heterojunction, Sensors and Actuators B 17:221 (1994).

    Article  CAS  Google Scholar 

  21. E. Traversa, A. Bearzotti, M. Miyayama, and H. Yanagida, Study of the conduction mechanism of La2CuO4/ZnO heterocontacts at different relative humidities, Sensors and Actuators B in press (1995).

    Google Scholar 

  22. E. Traversa and A. Bearzotti, A novel humidity detection mechanism for ZnO dense pellets, Sensors and Actuators B 23:181 (1995).

    Article  CAS  Google Scholar 

  23. K.D. Schierbaum, U.K. Kirner, J.F. Geiger, and W. Göpel, Schottky-barrier and conductivity gas sensors based upon Pd/SnO2 and Pt/TiO2, Sensors and Actuators B 4:87 (1991).

    Article  CAS  Google Scholar 

  24. Y. Shimizu, H. Arai, and T. Seiyama, Theoretical studies on the impedance-humidity characteristics of ceramic humidity sensors, Sensors and Actuators 7:11 (1985).

    Article  CAS  Google Scholar 

  25. G. Gusmano, G. Montesperelli, P. Nunziante, E. Traversa, A. Montenero, M. Braghini, G. Mattogno, and A. Bearzotti, “Humidity-sensitive properties of titania films prepared using the sol-gel process”, J. Ceram. Soc. Jpn. 101:1095 (1993).

    Article  CAS  Google Scholar 

  26. E. Joanni and J.L. Baptista, ZnO-Li2O humidity sensors, Sensors and Actuators B 17:69 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Traversa, E. (1995). Design of Ceramic Materials for Chemical Sensors with Intelligent Properties. In: Prasad, P.N., Mark, J.E., Fai, T.J. (eds) Polymers and Other Advanced Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0502-4_74

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0502-4_74

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0504-8

  • Online ISBN: 978-1-4899-0502-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics