Skip to main content

Biotechnological Application of Enzymes from Extremophilic Organisms: Synthesis of Modified Monomers

  • Chapter
Polymers and Other Advanced Materials

Abstract

In the last few years, the use of enzymes for industrial purpose has revealed a rapid growth owing to the advantages they confer to conventional chemical methods. For example biocatalysts are highly specific and efficient and are able to produce chiral compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D.A. Cowan, Biochemistry and molecular biology of the extremely thermophilic Archaebacteria, in: “Molecular Biology and Biotechnology of Extremophiles,” RA. Herbert, and R.J. Sharp, eds., New York: Chapman and Hall (1992).

    Google Scholar 

  2. D.A. Cowan, Biotechnology of the Archaea, TIBTECH 10:315–323 (1992)

    Article  CAS  Google Scholar 

  3. C.R. Woese, Bacterial Evolution, Microbiol Rev. 51:221–271 (1987).

    CAS  Google Scholar 

  4. D.G. Searcy, The archaebacterial histone HTa, in: “Bacterial chromatin,” C.O. Gualerzi, and C.L. Pow, eds., Heidelberg: Springer-Verlag (1986).

    Google Scholar 

  5. J.K. Kristjansson, Thermophilic organisms as sources of thermostable enzymes, TIBTECH 7: 349–353 (1989).

    Article  CAS  Google Scholar 

  6. K. Peek, L.D. Ruttersmith, R.M. Daniel, H.W. Morgan, and P.L. Bergquist, Thermophilic enzymes as industrial catalysts? Biotech Forum Europe 9: 466–470 (1992).

    Google Scholar 

  7. R.A. Herbert, A perspective on the biotechnological potential of extremophiles, TIBTECH 10: 395–402 (1992).

    Article  CAS  Google Scholar 

  8. M. Moracci, A. La Volpe, J.F. Pulitzer, M. Rossi, and M. Ciaramella, Expression of the thermostable β-Galactosidase gene from the Archaebacterium Sulfolobus solfataricus in Saccharomyces cerevisiae and characterization of a new inducible promoter for heterologous expression, J. Bacteriol 174: 873–882 (1992).

    CAS  Google Scholar 

  9. F.M. Pisani, C. De Martino, and M. Rossi, A DNA polymerase from the archaeon Sulfolobus solfataricus shows sequence similarity to family β-DNA polymerases, Nucleic Acids Res. 20: 2711–2716 (1992).

    Article  CAS  Google Scholar 

  10. S. Ammendola, C.A. Raia, C. Caruso, L. Camardella, S. Dauria, M. De Rosa, and M. Rossi, Thermostable NAD+-dependent alcohol dehydrogenase from Sulfolobus solfataricus: gene and protein sequence determination and relationship to other alcohol dehydrogenases, Biochemistry 31:12514–12523 (1992).

    Article  CAS  Google Scholar 

  11. R. Cannio, D. de Pascale, M. Rossi, and S. Bartolucci, Gene expression of a thermostable β-galactosidase in mammalian cells and its application in assays of eukaryotic promoter activity, Biotechnol. Appl. Biochem. 19: 233–244 (1994).

    CAS  Google Scholar 

  12. A. Trincone, B. Nicolaus, L. Lama, and A. Gambacorta, Potential application of Sulfolobus solfataricus as catalyst in organic synthesis, Indian J. Chem. (Section B) 32: 25–29 (1993).

    Google Scholar 

  13. E. Keinan, S. C. Sinha, and A. Sinha Bagchi, Thermostable enzymes in organic synthesis. 2. Asymmetric reduction of ketones with alcohol dehydrogenase from Thermoanaerobium Brockü, J. Org. Chem. 57: 3631–3636 (1992).

    Article  CAS  Google Scholar 

  14. E. Santaniello, P. Ferraboschi, P. Grisenti, and A. Manzocchi, The biocatalytic approach to the preparation of enantiomerically pure chiral building blocks, Chem. Rev. 92: 1071–1140 (1992).

    Article  CAS  Google Scholar 

  15. C-H. Wong, and G. M. Whitesides, Enzymes in Synthetic organic chemistry Tetrahedron Organic series Vol. 12, J.E. Baldwin, F.R.S. Magnus and P.D. Magnus, eds., Great Britain Pergamon Press (1994).

    Google Scholar 

  16. H. Waldmann, and D. Sebastian, Enzymatic protecting group techniques, Chem. Rev. 94: 911–937 (1994).

    Article  CAS  Google Scholar 

  17. E. J. Toone, E. S. Simon, M. D. Bednarski, and G. M. Whitesides, Enzyme-catalysed synthesis of carbohydrates, Tetrahedron 45: 5365–5422 (1989).

    Article  CAS  Google Scholar 

  18. A. Trincone, B. Nicolaus, L. Lama, P. Morzillo, M. De Rosa, and A. Gambacorta, Enzyme-catalysed synthesis of alkyl-β-D-glycosides with crude omogenate of Sulfolobus solfataricus, Biotechnol Lett 13: 235–240 (1991).

    Article  CAS  Google Scholar 

  19. A. Trincone, R. Improta, R. Nucci, M. Rossi, and A. Gambacorta, Enzymatic synthesis of carbohydrate derivatives using β-glycosidase of Sulfolobus solfataricus, Biocatalysis 10: 195–210 (1994).

    Article  CAS  Google Scholar 

  20. A. Trincone, B. Nicolaus, L. Lama, and A. Gambacorta, Stereochemical studies of enzymatic transglycosilation using Sulfolobus solfataricus, J. Chem. Soc. Perkin Trans I 2841–2844 (1991).

    Article  Google Scholar 

  21. A. Trincone, E. Pagnotta, and G. Sodano, Chemoenzymatic synthesis and stereochemisty of aleppotrioloside, a naturally occurring glycoside, Tetrahedron Letters 35: 1415–1416 (1994).

    Article  CAS  Google Scholar 

  22. A. Trincone, E. Pagnotta, Efficient chemoselective synthesis of 3–4’-dihydroxypropiophenone 3-ο-β-D-glucoside by thermophilic β-glycosidase from Sulfolobus solfataricus, Biotechnol Lett 17: 45–48 (1995).

    Article  CAS  Google Scholar 

  23. K. Mori, Z-H. Qian, and S. Watanabe, Synthesis of 3–4’-dihydroxy-propiophenone 3-p-D-glucoside a constituent of Betula platyphylla, by enzymatic transglycosilation, Liebigs Ann. Chem. 485–487 (1992).

    Google Scholar 

  24. A. M. Blinkovski, and J. S. Dordick, Enzymatic derivatization of saccharides and their chemical polymerization, Tetrahedron: Asymmetry 6: 1221–1228 (1993).

    Article  Google Scholar 

  25. J. S. Dordick, 1992, Enzymatic and chemoenzymatic approaches to polymer synthesis, TIBTECH 10: 287–293 (1992).

    Article  CAS  Google Scholar 

  26. R. Nucci, M. Moracci, C. Vaccaro, N. Vespa, and M. Rossi, Exoglucosidase activity and substrate specificity of the β-glycosidase isolated from the extreme thermophile Sulfolobus solfataricus, Biotechnol. Appl. Biochem. 17: 239–250 (1993).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Peluso, G., Trincone, A., La Cara, F., Rosso, F., Rossi, M. (1995). Biotechnological Application of Enzymes from Extremophilic Organisms: Synthesis of Modified Monomers. In: Prasad, P.N., Mark, J.E., Fai, T.J. (eds) Polymers and Other Advanced Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0502-4_56

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0502-4_56

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0504-8

  • Online ISBN: 978-1-4899-0502-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics