Skip to main content

Heat Treatment Behaviour of Metal Matrix Composites

  • Chapter
Polymers and Other Advanced Materials

Abstract

High performance composites on the basis of aluminium alloy matrix and alumina-silica continuous fibres were studied from the point of view of their response to age hardening treatment as compared to the unreinforced matrix alloy. The changes were monitored by following the microhardness of the matrix and the electrical resistivity of the materials examined. It was observed that the matrix of the composites showed considerably more hardening effect than the matrix of the unreinforced alloy inspite of the fibre being innert to the matrix alloy. The resistivity changes in the composites during the ageing process indicated that appreciable internal stress continued to persist in the composite material well after overageing and hardness decline took place. EDX evaluation of regions close to the fibres indicated a higher magnesium content as compared to the regions away from the fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. J. Arsenault, and R. M. Fisher, Microstructure of fiber and particulate SiC in 6061 Al composites, Scripta Metallurgica. 17:67–71 (1983).

    Article  CAS  Google Scholar 

  2. Y. Song and T.N. Baker, Accelerated aging response in ceramic reinforced AA 6061 composites, Materials Sci. Tech. 10:406–413 (1994).

    CAS  Google Scholar 

  3. M. Vogelsang, R. J. Arsenault, and R. M. Fisher, An in situ HVEM study of dislocation generation at Al/SiC interface in metal matrix composites, Met. Trans.A. 17A:379–389 (1986).

    Article  CAS  Google Scholar 

  4. M. B. House, K. C. Meinert, and R. B. Bhagat, The aging response and creep of DRA composites, Journal of Metals. 43(8): 24–28 (1991).

    CAS  Google Scholar 

  5. K. K. Chawla, and M. Metzger, Initial dislocation distributions in tungsten fibre/copper composites, J. Mat. Sci. 7: 34–39 (1972).

    Article  CAS  Google Scholar 

  6. Sumitomo Metal Co, Tokyo, Japan. “Altex Fibres, Product information”.

    Google Scholar 

  7. A.G. Guy, C.S. Barrett and R.F. Mehl, Age hardening in Copper Beryllium alloys, Trans. A.I.M.E. 175: 216 (1948).

    Google Scholar 

  8. J. B. Shamsul, N. Jomin, R. S. Bushby, and V. D. Scott, Fabrication, microstructure and ageing characteristics of aluminimum alloy (6061) reinforced with Altex fibre, in: “Proceedings of the International conference on Recent Advances in Materials and Mineral Resources,” Universiti Sains Malaysia, Penang, Malaysia, 212–221 (1994).

    Google Scholar 

  9. M. Yang and V. D. Scott,, Microstructural studies of aluminium-silicon alloy reinforced with alumina fibres, J. Mat. Sci. 26: 2245–2254 (1991).

    Article  CAS  Google Scholar 

  10. P.R. Khangaonkar, J.B. Shamsul, and R. Azmi, Age hardening of 6061/alumina silica fibre composites, in: “Symposium on High Performance Composites: Commonality of Phenomena,” K. K. Chawla, ed., TMS, Warrandale, PA USA, 435–443 (1994).

    Google Scholar 

  11. R. J. Arsenault, Strengthening of metal matrix composites due to dislocation generation through CTE mismatch, in: “Metal matrix composites: Mechanisms and Properties”, R. K. Everett and R. J. Arsenault, eds., The Academic Press, Boston MA):79–100 (1991).

    Google Scholar 

  12. C. M. Friend, I. Horsfall, S. D. Luxon, and R. J. Young, The effect of fibre matrix interfaces on the age hardening characteristics of б-alumina fibre reinforced AA6061, in: “Cast metal matrix composites”, S. G. Fishman and A. K. Dhingra, eds., ASM International: 309–315 (1988).

    Google Scholar 

  13. A. Badini, F. Marino, and A. Tomasi, Natural aging characteristics of aluminium alloy 6061 reinforced with SiC whiskers and particles, Material Science and Engineering, 136A:99–107 (1991).

    Article  Google Scholar 

  14. D. Srinivasan, and M. K. Surappa, Effect of iron impurity and thermomechanical processing on the age hardening behaviour of 6061 Al-SiCp MMC produced by casting route, Scripta Metallurgica et Materialia, 27:1139–1144 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rahmat, A., Baharin, S., Khangaonkar, P.R. (1995). Heat Treatment Behaviour of Metal Matrix Composites. In: Prasad, P.N., Mark, J.E., Fai, T.J. (eds) Polymers and Other Advanced Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0502-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0502-4_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0504-8

  • Online ISBN: 978-1-4899-0502-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics