Skip to main content

Dosimetry

  • Chapter
Environmental Radon

Part of the book series: Environmental Science Research ((ESRH,volume 35))

Abstract

A man walks into the doctor’s office, raises his arm and says, “Doc, it hurts when I do this.” The doctor says, “Don’t do that.” An old vaudeville joke may seem an odd start to a chapter on dosimetry, but hidden within this joke is a kernel of truth concerning the nature of dosimetry and why we bother with it. The field of radiation protection is faced with past experience concerning the uranium miners and other groups exposed to radon and its progeny. If we look carefully, there are lessons to be learned from these experiences, lessons which can guide us in determining how to act in future situations involving radiation which might differ in some way from the past experiences. For example, new experiences may differ from the past in regard to the amount of radioactivity inhaled, the kind of radioactivity inhaled, the size of the particles inhaled, or even the ages and health of the people involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. International Commission on Radiation Units and Measurements, Radiation Quantities and Units, ICRU Report 33, Bethesda, MD (1980).

    Google Scholar 

  2. H.H. Rossi, The role of microdosimetry in radiobiology, Radiat. Environ. Biophys. 17, 29 (1979).

    Article  PubMed  CAS  Google Scholar 

  3. International Commission on Radiation Units and Measurements, Microdosimetry, ICRU Report 36, Bethesda, MD (1983).

    Google Scholar 

  4. E. Polig, Hit probabilities for cellular targets by bone surface seeking alpha emitters, Phys. Med. Biol. 26, 369–377 (1981).

    Article  PubMed  CAS  Google Scholar 

  5. D. J. Crawford-Brown, Age dependent hit probibilities for lung cancer induction following exhalation of ingested radon, Proc. Second Workshop on Lung Dosimetry, Cambridge, England, September 1985 (to be published).

    Google Scholar 

  6. J. A. Simmonds and S. R. Richards, Microdosimetry of alpha irradiated lung, Health Phys. 46, 607 (1984).

    Article  Google Scholar 

  7. W. Hofmann, Microdosimetry of plutonium in lungs, Health Phys. Suppl. 1, 44, 419–429 (1983).

    PubMed  CAS  Google Scholar 

  8. D. R. Fisher, In search of the relevant lung dose, in: Current Concepts in Lung Dosimetry (D. R. Fisher, ed.) CONF 820492, pp. 29–37, National Technical Information Center, U.S. Department of Energy, Washington, DC (1983).

    Google Scholar 

  9. ICRP Task Group on Lung Dynamics, Deposition and Retention models for internal dosimetry of the human respiratory tract, Health Phys. 12, 173–207 (1966).

    Google Scholar 

  10. A. VanAs and I. Webster, The morphology of mucus in mammalian pulmonary airways, Environ. Res. 7, 1–12 (1974).

    Article  Google Scholar 

  11. G. A. Laurenzi, The mucociliary stream, J. Med., 15, 175–176 (1973).

    CAS  Google Scholar 

  12. M. A. Sleigh, The Biology of Cilia and Flagella, Pergamon Press, London (1962).

    Google Scholar 

  13. J. Sade, N. Eliezer, A. Silberg, and A. C. Nevo, The role of mucus in transport by cilia, Am. Rev. Resp. Dis. 102, 48–52 (1970).

    PubMed  Google Scholar 

  14. G. E. Angus and W. M. Turbeck, Number of alveoli in the human lung, J. Appl. Phys. 32, 483–483 (1972).

    CAS  Google Scholar 

  15. K. Horsfield, Quantitative morphology and structure: Functional correlations in the lung, in: The Lung: Structure, Function and Disease, W. M. Thurlbeck and M. R. Abell, eds.), p. 151, Williams and Wilkins Co., Baltimore, MD (1978).

    Google Scholar 

  16. E. R. Weibel, The cell population of the normal lung, in: Lung Cells in Disease (A. Bouhuys, ed.), p. 3, North Holland Publishing Co., Amsterdam (1976).

    Google Scholar 

  17. E. R. Weibel, Morphometry of the Human Lung, Academic Press, New York (1963).

    Google Scholar 

  18. C. N. Davies, A formalized anatomy of the human respiratory tract, in: International Symposium on Inhaled Particles and Vapors (C. N. Davies, ed.), p. 82, Pergamon Press, Oxford (1960).

    Google Scholar 

  19. H.D. Landhahl, On the removal of airborne droplets by the human respiratory tract: I. The lung, Bull Math. Biophys. 12, 43 (1950).

    Article  Google Scholar 

  20. W. Findeisen, Über das Absetzen Kleiner, in der Luft Suspendierter Teilchen in der Menshlichen Lunger bei der Atmung, Pfluegers Arch. J. Ges. Physiol. 236, 367 (1935).

    Article  Google Scholar 

  21. K. Horsfield, Models of the human bronchial tree, J. Appl. Phys. 31, 207–217 (1971).

    CAS  Google Scholar 

  22. H. C. Yeh and M. Schum, Models of human lung airways and their application to inhaled particle deposition, Bull. Math. Biol. 42, 461 (1980).

    PubMed  CAS  Google Scholar 

  23. O. G. Raabe, H. C. Yeh, G. M. Schum, and R. F. Phalen, Tracheobronchial Geometry: Human, Dog, Rat, Hamster, Lovelace Foundation Report, LF-53, Albuquerque, NM (1976).

    Google Scholar 

  24. A. Hislop, D. C. F. Muir, M. Jacobson, G. Simon, and L. Reid, Postnatal growth and functions of the pre-acinar airways, Thorax 27, 265–274 (1972).

    Article  PubMed  CAS  Google Scholar 

  25. W. Hofmann, F. Steinhausler, and E. Pohl, Dose calculations for the respiratory tract from inhaled natural radioactive nuclides as a function of age, Health Phys. 37, 517–532 (1979).

    Article  PubMed  CAS  Google Scholar 

  26. International Commission on Radiological Protection, Report of the Task Group on Reference Man, ICRP Publication 23, Pergamon Press, New York (1974).

    Google Scholar 

  27. D. J. Crawford-Brown, A Generalized Age Dependent Lung Model with Applications to Radiation Standards, Oak Ridge National Laboratory Report, NUREG/CR-1955, Oak Ridge, TN (1981).

    Google Scholar 

  28. D. J. Crawford-Brown, Identifying critical human subpopulations by age groups: Radioactivity and the lung, Phys. Med. and Biol. 27, 539–552 (1982).

    Article  Google Scholar 

  29. D. J. Crawford-Brown and K. F. Eckerman, Modifications of the ICRP Task Group lung model to reflect age dependence, Radiat. Prot. Dosim. 2, 209–220 (1983).

    Google Scholar 

  30. R. A. Millikan, The Electron, Protons, Photons, Neutrons, Mesotrons and Cosmic Rays, 2nd Ed., University of Chicago Press, Chicago (1974).

    Google Scholar 

  31. P. G. Gormley and M. Kennedy, Diffusion from a stream flowing through a cylindrical tube, Proc. R. Ir. Acad. 52, 163 (1949).

    Google Scholar 

  32. C. N. Davies, Diffusion and sedimentation of aerosol particles from Poiseville flow in pipes, J. Aerosol Sci. 4, 317–328 (1973).

    Article  Google Scholar 

  33. D. V. Ingham, Diffusion of aerosols from a stream flowing through a circular tube, J. Aerosol Sci. 6, 125–132 (1975).

    Article  Google Scholar 

  34. J. W. Thomas, Particle loss in sampling conduits, in: Assessment of Airborne Radioactivity, p. 701, International Atomic Energy Agency, Vienna (1967).

    Google Scholar 

  35. R. E. Pattle, Inhaled Particles and Vapours, p. 70, Pergamon Press, Oxford (1961).

    Google Scholar 

  36. H. D. Landahl and S. Black, Filtration of airborne particulates through the human nose, J. Ind. Hyg. Toxicol. 29, 269 (1947).

    PubMed  CAS  Google Scholar 

  37. M. Lippmann, Deposition and clearance of inhaled particles in the human nose, Ann. Otol Rhinol. Laryngol. 79, 519–528 (1970).

    PubMed  CAS  Google Scholar 

  38. J. Heyder, Total deposition of aerosol particles in the human respiratory tract for nose and mouth breathing, J. Aerosol Sei. 6, 311–328 (1975).

    Article  Google Scholar 

  39. F. A. Fry, Charge distribution on polystyrene aerosols and deposition in the human nose, J. Aerosol Sei. 1, 135–146 (1970).

    Article  Google Scholar 

  40. R. F. Hounam, A. Black, and M. Walsh, The deposition of aerosol particles in the naseopharyngeal region of the human respiratory tract, J. Aerosol Sei. 2, 47–61 (1971).

    Article  Google Scholar 

  41. T. T. Mercer, The deposition model of the Task Group on Lung Dynamics: A comparison with recent experimental data, Health Phys. 29, 673–680 (1975).

    Article  PubMed  CAS  Google Scholar 

  42. A. George and A. J. Breslin, Deposition of radon daughters in humans exposed to uranium mine atmospheres, Health Phys. 17, 115–124 (1969).

    Article  PubMed  CAS  Google Scholar 

  43. W. L. Dennis, (comments on discussion) in: Inhaled Particles and Vapors (C. N. Davies, ed.), p. 88, Pergamon Press, Oxford (1961).

    Google Scholar 

  44. W. Stahlhofen, J. Gebhart and J. Heyder, Experimental determination of the regional deposition of aerosol particles in the human respiratory tract, J. Am. Ind. Hyg. Assoc. 41, 385–398 (1980).

    Article  CAS  Google Scholar 

  45. H. Landahl and R. Herrmann, Sampling of liquid aerosols by wires, cylinders and slides and the efficiency of impaction of the droplets, J. Colloid Sci. 4, 103 (1949).

    Article  PubMed  CAS  Google Scholar 

  46. J. Johnstone, I. Isles, and D. Muir, Inertial deposition of particles in the lung, J. Aerosol Sci. 4, 269–270 (1973).

    Article  Google Scholar 

  47. K. Takahashe and H. Ito, A Computational Model for Regional Deposition of Aerosol Particles in the Human Lung, Technical Report of the Institute of Atomic Energy 17, Kyoto University, Kyoto, Japan (1976).

    Google Scholar 

  48. H. Yeh, Use of a heat transfer analogy for a mathematical model of respiratory tract deposition, Bull. Math. Biol. 36, 105 (1974).

    PubMed  CAS  Google Scholar 

  49. International Commission on Radiological Protection, The Metabolism of Compounds of Plutonium and Other Actinides, ICRP Publication 19, Pergamon Press, Oxford (1972).

    Google Scholar 

  50. M. Friedman, F. D. Scott, D. O. Poole, R. Dougherty, G. A. Chapman, H. Watson, and M. A. Sackner, A new roentgenographic method for estimating mucus velocity in airways, Am. Rev. Resp. Dis. 115, 67–72 (1977).

    PubMed  CAS  Google Scholar 

  51. D. Yeates, N. Aspin, H. Levison, M. T. Jones, and A. C. Bryan, Mucociliary trachéal transport in man, J. Appl. Phys. 39 (1975).

    Google Scholar 

  52. A. D. Barclay, K. J. Franklin, and R. G. Macbeth, Roentogenographic studies of the excretion of dusts from the lungs, Am. J. Roentgenol. 39, 673–686 (1938).

    Google Scholar 

  53. G. Gamsu, R. M. Weintraub, and J. A. F. Nadel, Clearance of tantalum from airways of different caliber in man evaluated by a roentgenographic method, Am. Rev. Resp. Dis. 107, 214–224 (1973).

    PubMed  CAS  Google Scholar 

  54. B. Altshuler, N. Nelson, and M. Kuschner, Estimation of lung tissue dose from the inhalation of radon and daughters, Health. Phys. 10, 1137–1161 (1964).

    Article  PubMed  CAS  Google Scholar 

  55. A. K. M. Haque and A. J. L. Collinson, Radiation dose to the respiratory system due to radon and its daughter products, Health Phys. 13, 431–443 (1967).

    Article  PubMed  CAS  Google Scholar 

  56. G. A. Laurenzi, The mucociliary stream, J. Occup. Med. 15, 175–176 (1973).

    PubMed  CAS  Google Scholar 

  57. W. Whaling, The energy loss of charged particles in matter, in: Handbuch der Physik (S. Flugge, ed.), p. 193, Springer, Berlin (1958).

    Google Scholar 

  58. H. Bichsel, Charged particle interactions, in: Radiation Dosimetry (F. H. Attix and W. C. Roesch, eds.), p. 158, Academic Press, New York (1968).

    Google Scholar 

  59. E. Rotondi, Energy loss of alpha particles in tissue, Radiat. Res. 33, 1–9 (1968).

    Article  PubMed  CAS  Google Scholar 

  60. P. J. Walsh, Stopping power and range of alpha particles, Health Phys. 19, 312–316 (1970).

    PubMed  CAS  Google Scholar 

  61. A. K. M. Haque, Energy expended by alpha particles in lung tissue, Br. J. Appl. Phys. 17, 905 (1966).

    Article  CAS  Google Scholar 

  62. N. H. Harley and B. S. Pasternack, Alpha absorption measurements applied to lung dose from radon daughters, Health Phys. 23, 771–782 (1972).

    Article  PubMed  CAS  Google Scholar 

  63. D. J. Crawford, Radiological Risk of Actinon (219Rn), Oak Ridge National Laboratory Report ORNL/TM-7977, Oak Ridge, TN (1980).

    Google Scholar 

  64. D. E. Lea, Actions of Radiations on Living Cells, Cambridge University Press, London (1955).

    Google Scholar 

  65. W. Jacobi, The dose to the human respiratory tract by inhalation of shortlived 222Rn and 220Rn decay products, Health Phys. 10, 1163–1174 (1964).

    Article  PubMed  CAS  Google Scholar 

  66. V. N. Kirichenko, Experimental studies of the short-lived daughters of radon in the respiratory tract, Gig. Sanit. 2, 52 (1970).

    Google Scholar 

  67. National Council on Radiation Protection and Measurement, Evaluation of Occupational and Environmental Exposures to Radon and Radon Daughters in the United States, NCRP Report 78, Bethesda, MD (1984).

    Google Scholar 

  68. H. Goldziecher, Über Baselzellen Wucherungea der Bronchial Schlemeit,” Zentralbl. Allg. Path. Pathol. Anat. 29, 506 (1918).

    Google Scholar 

  69. P. Kotin, D. Courington, and H. L. Falk, Pathogenesis of cancer in ciliated mucus secreting epithelium, Am. Rev. Resp. Dis. 93, 115–124 (1966).

    PubMed  Google Scholar 

  70. S. Hattori, M. Matsuda, R. Tateishi, H. Nishihara, and T. Harai, Oat cell carcinoma of the lung, Cancer 30, 1014–1024 (1972).

    Article  PubMed  CAS  Google Scholar 

  71. E. M. McDowell and B. F. Trump, Histogenesis of preneoplastic and neoplastic lesions in tracheobronchial epithelium, Surv. Synth. Pathol. Res. 2, 235–242 (1983).

    Google Scholar 

  72. J. Horacek, V. Placek, and J. Sevc, Histologic types of bronchogenic cancer in relation to different conditions of radiation exposure, Cancer 40, 832–835 (1977).

    Article  PubMed  CAS  Google Scholar 

  73. R. M. Gastineau, P. J. Walsh, and N. Underwood, Thickness of bronchial epithelium with relation to exposure to radon, Health Phys. 23, 857–860 (1972).

    PubMed  CAS  Google Scholar 

  74. O. G. Raabe, Deposition and Clearance of Inhaled Aerosols, Laboratory for Energy Related Health Research Report UCD 472-503, University of California, Davis (1979).

    Google Scholar 

  75. N. H. Harley and B. S. Pasternack, Environmental radon daughter alpha dose factors in a five-lobed human lung, Health Phys. 42, 789–799 (1982).

    Article  PubMed  CAS  Google Scholar 

  76. A. C. Chamberlain and E. D. Dyson, The dose to the trachea and bronchi from the decay products of radon and thoron, Br.J. Radiol. 29, 317–325 (1956).

    Article  PubMed  CAS  Google Scholar 

  77. P. J. Walsh, Radiation dose to the respiratory tract of uranium miners—A review of the literature, Environ. Res. 3, 14–36 (1970).

    Article  PubMed  CAS  Google Scholar 

  78. W. Hofmann and F. Steinhausler, Dose calculations for infants and youths due to the inhalation of radon and its decay products, in: Proceedings of DECUS Europe Symposium, London, pp. 315-320 (1977).

    Google Scholar 

  79. R. Schlesinder and M. Lippmann, Particle deposition in the trachea, in vivo and hollow casts, Thorax 31, 678–684 (1976).

    Article  Google Scholar 

  80. G. A. Ferron, Deposition of polydisperse aerosols in two glass models representing the upper human airways, J. Aerosol Sci. 8, 409–427 (1977).

    Article  Google Scholar 

  81. P. Hammill, Particle deposition due to turbulent diffusion in the upper respiratory system, Health Phys. 36, 355–369 (1979).

    Article  Google Scholar 

  82. T. Martonen, personal communication (1986).

    Google Scholar 

  83. D. J. Crawford-Brown, On a theory of age dependence in the incidence of lung carcinomas following inhalation of a radioactive atmosphere, in: Current Topics in Lung Dosimetry (D. Fisher, ed.), pp. 178–188, CONF-820492, Batelle Northwest Laboratory, Richland, WA (1983).

    Google Scholar 

  84. T. L. Chan and M. Lippmann, Experimental measurements and empirical modelling of the regional deposition of inhaled particles in humans, J. Am. Ind. Hyg. Assoc. 41, 399–409 (1980).

    Article  CAS  Google Scholar 

  85. G. Giacomelli-Maltoni, C. Melandri, V. Prodi, and G. Tarroni, Deposition efficiency of monodisperse particles in the human respiratory tract, J. Am. Ind. Hyg. Assoc. 33, 603–610 (1972).

    Article  CAS  Google Scholar 

  86. F. Shanty, Deposition of Ultrafine Aerosols in the Respiratory Tract of Human Volunteers, Doctoral dissertation, School of Hygiene and Public Health, Johns Hopkins University, Baltimore (1974).

    Google Scholar 

  87. B. Altshuler, L. Yarmus, E. Palmes, and N. Nelson, Aerosol deposition in the human respiratory tract, AMA Arch. Ind. Health 15, 293–303 (1957).

    PubMed  CAS  Google Scholar 

  88. N. Foord, A. Black, and M. Walsh, Regional Deposition of 2.5-7.5 μm Diameter Inhaled Particles in Healthy Male Non-Smokers, AERE Harwell Report, ML-76-2892, Great Britain (1976).

    Google Scholar 

  89. M. Lippmann and R. Albert, The effect of particle size on the regional deposition of inhaled aerosols in the human respiratory tract, J. Am. Ind. Hyg. Assoc. 30, 257–275 (1969).

    CAS  Google Scholar 

  90. F. T. Cross, N. H. Harley, and W. Hofmann, Health effects and risks from Rn-222 in drinking water, Health Phys. 48, 649 (1985).

    Article  PubMed  CAS  Google Scholar 

  91. D. J. Crawford-Brown, Age dependent lung doses from ingested 222Rn in drinking water, submitted to Health Phys. 52, 149–156 (1987).

    Article  PubMed  CAS  Google Scholar 

  92. I. O. Anderson and I. Nilsson, Exposure following ingestion of water containing Rn-222, in: Assessment of Radioactivity in Man, p. 317, International Atomic Energy Agency, Vienna (1964).

    Google Scholar 

  93. W. vonDobeln and B. Lindell, Some aspects of Rn-222 contamination following ingestion, Arkiv für Fysik 27, 531 (1964).

    CAS  Google Scholar 

  94. J. B. Hursh, D. A. Morken, T. P. Davis, and A. Lovaas, The fate of Rn-222 ingested by man, Health Phys. 11, 465–476 (1965).

    Article  PubMed  CAS  Google Scholar 

  95. M. Suomela and H. Kohlos, Studies on the elimination radiation and the radiation exposure following ingestion of Rn-222 rich water, Health Phys. 23, 641–652 (1972).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Crawford-Brown, D.J. (1987). Dosimetry. In: Cothern, C.R., Smith, J.E. (eds) Environmental Radon. Environmental Science Research, vol 35. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0473-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0473-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0475-1

  • Online ISBN: 978-1-4899-0473-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics