Skip to main content

Cardinal Interpolation and Spline Functions IV. The Exponential Euler Splines

  • Chapter
I. J. Schoenberg Selected Papers

Part of the book series: Contemporary Mathematicians ((CM))

  • 666 Accesses

Abstract

As background for our discussion we recall a result from [10]. First a few definitions. Let ℐ n denote the class of cardinal spline functions S(x) of degree n (n≧1) having their knots at the integer points of the real axis. This means that S(x)∈ℐ n , provided that the restriction of S(x) to every unit interval (v, v + 1) is a polynomial of degree n at most, and that

$$S\left( x \right) \in C^{n - 1} \left( { - \infty ,\,\infty } \right).$$
(1)

Furthermore, let

$$\vartheta _n^* \, = \,\left\{ {S\left( x \right);\,S\left( {x + \frac{1} {2}} \right) \in \vartheta _n } \right\}.$$
(2)

The elements of ℐ* n are again cardinal spline functions of degree n, but having their knots at v+1/2 half way between consecutive integers.

Sponsored by the U. S. Army under Contract No. DA—31–124—ARO—D—462.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. H. Ahlberg and E. N. Nilson, Polynomial splines on the real line. J. Approximation Theory 3 (1970), 398–409.

    Article  Google Scholar 

  2. L. Carlitz, Eulerian numbers and polynomials. Math. Mag. 32 (1959), 247–260.

    Article  Google Scholar 

  3. H. B. Curry and I. J. Schoenberg, On Pólya frequency functions IV. The fundamental spline functions and their limits. J. Analyse Math. 17 (1966), 71–107.

    Article  Google Scholar 

  4. L. Euler, Institutionis Calculi Differentialis, vol. II. Petersburg 1755.

    Google Scholar 

  5. G. Frobenius, Über die Bernoullischen Zahlen und die Eulerschen Polynome. Sitzungsberichte der Preussischen Akad. der Wiss. Phys.-Math. K1. (1910), 809-847. Also in volume 3 of Collected Works, 440-478.

    Google Scholar 

  6. E. Hille, Analytic function theory, vol. IL Ginn and Company, Boston 1962.

    Google Scholar 

  7. N. E. Nörlund, Vorlesungen über Differenzenrechnung. Springer, Berlin 1924.

    Book  Google Scholar 

  8. W. Quade and L. Collatz, Zur Interpolationstheorie der reellen periodischen Funktionen. Sitzungsber. der Preuss. Akad. der Wiss., Phys.-Math. Kl, (1938), 383–429.

    Google Scholar 

  9. I. J. Schoenberg, Cardinal interpolation and spline functions. J. Approximation Theory 2 (1969), 167–206.

    Article  Google Scholar 

  10. I. J. Schoenberg, Cardinal interpolation and spline functions II. Interpolation of data of power growth. MRC-Tech. Sum. Rep. 1104, Sept. 1970. To appear in J. Approximation Theory.

    Google Scholar 

  11. J. M. Whittaker, Interpolatory functions theory. Cambridge Tract 33, University Press. Cambridge 1935.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schoenberg, I.J. (1988). Cardinal Interpolation and Spline Functions IV. The Exponential Euler Splines. In: de Boor, C. (eds) I. J. Schoenberg Selected Papers. Contemporary Mathematicians. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-0433-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0433-1_3

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-0435-5

  • Online ISBN: 978-1-4899-0433-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics