Skip to main content

Semismoothness and Superlinear Convergence in Nonsmooth Optimization and Nonsmooth Equations

  • Chapter
Nonlinear Optimization and Applications

Abstract

This paper discusses recent developments on superlinear convergence results in nonsmooth optimization and nonsmooth equations. The concept of semismoothness has been shown to play a key role to obtain superlinear convergence for algorithms solving nonsmooth problems. Using semismoothness and nonsingularity conditions, generalized Newton methods have been proved locally and superlinearly convergent for solving systems of nonsmooth equations. Moreover, nonsmooth equation based generalized Newton methods have been successfully used for solving nonlinear complementarity and related problems. Various quasi-Newton methods have been proposed for different nonsmooth equations. But, more work on quasi-Newton methods is needed. The idea of generalized Newton methods was further applied to nonsmooth unconstrained and constrained optimization, for instance, LC1 problems and nonsmooth convex optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonnans J.F., “Local analysis of Newton-type methods for variational inequalities and nonlinear programming”. Appl. Math. Optimization 29, pp. 161–186, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bonnans J.F., Gilbert J., Lemaréchal C., and Sagastizábal C., “A family of variable metric proximal methods”. Math. Programming 68, pp. 15–47, 1995.

    MathSciNet  MATH  Google Scholar 

  3. Chen X., “On the convergence of Broyden-like methods for nonlinear equations with nondifferentiable terms”. Ann. Inst. Statist Math. 42, pp. 387–401, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen X., “Convergence of the BFGS method for LC 1 convex constrained optimization”. SIAM J. Control and Optimization, forthcoming.

    Google Scholar 

  5. Chen, X. and Qi L., “A parameterized Newton method and a quasi-Newton method for solving nonsmooth equations”. Computational Optimization Appl. 3, pp. 157–179, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen X., Qi L., and Womersley R.S., “Newton’s method for quadratic stochastic programs with recourse”. J. Computational Appl. Math. 60, pp. 29–46, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen X., and Womersley R.S., “A parallel inexact Newton method for stochastic program with recourse”. Annals Oper. Res., forthcoming.

    Google Scholar 

  8. Chen X., and Yamamoto T., “On the convergence of some quasi-Newton methods for nonlinear equations with nondifferentiable term”. Computing 48, pp. 87–94, 1992.

    Article  MathSciNet  Google Scholar 

  9. Chen X., and Yamamoto T., “Newton-like methods for solving underdetermined nonlinear equations”. J. Computational Appl. Math. 55, pp. 311–324, 1995.

    Article  MathSciNet  Google Scholar 

  10. Clarke F.H., “Optimization and Nonsmooth Analysis”. John Wiley, New York, 1983.

    MATH  Google Scholar 

  11. De Luca T., Facchinei F., and Kanzow C., “A semismooth equation approach to the solution of nonlinear complementarity problems”. Math. Programming, forthcoming.

    Google Scholar 

  12. Dennis J.E., and Moré J.J., “Quasi-Newton methods: Motivation and theory”. SIAM Review 19, pp. 46–89, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  13. Dennis J.E., and Schnabel R.B., “Numerical Methods for Unconstrained Optimization and Nonlinear Equations”. Prentice-Hall, Englewood Cliffs, New Jersey, 1983.

    MATH  Google Scholar 

  14. Dirkse S.P., Ferris M.C., “MCPLIB: A collection of nonlinear mixed complementarity problems”. Optimization Methods and Software, forthcoming.

    Google Scholar 

  15. Facchinei F., “Minimization of SC1 functions and the Maratos effect”. Oper. Res. Letter, 17, pp. 131–137, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  16. Facchinei F., “A new recursive quadratic programming algorithm with global and superlinear convergence properties”. Preprint, Revised Version, Dipartmento di Informatica e Sistemistica, Universitá di Roma “La Sapienza”, Roma, Italy, 1994.

    Google Scholar 

  17. Facchinei F., and Kanzow C., “A nonsmooth inexact Newton method for the solution of largescale nonlinear complementarity problems”. Tech. Rep. 95, Institute of Applied Mathematics of the University of Hamburg, Hamburg, Germany, 1995.

    Google Scholar 

  18. Facchinei F., and Soares J., “A new merit function for nonlinear complementarity problems and a related algorithm”. SIAM J. on Optimization, forthcoming.

    Google Scholar 

  19. Fischer A., “A special Newton-type optimization method”. Optimization 24, pp. 269–284, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  20. Fischer A., “On the superlinear convergence of a Newton—type method for LCP under weak conditions”. Optimization Methods and Software, forthcoming.

    Google Scholar 

  21. Fischer A., “A globally and Q-quadratically convergent Newton-type method for positive semidefinite linear complementarity problems”. J. Optimization Theory and Appl., forthcoming.

    Google Scholar 

  22. Fischer A., “An NCP—function and its use for the solution of complementarity problems”. In: D.Z. Du, L. Qi and R.S. Womersley, eds., “Recent Advances in Nonsmooth Optimization”, World Scientific, New Jersey, pp. 88–105, 1995.

    Chapter  Google Scholar 

  23. Fischer A., “Solution of monotone complementarity problems with locally Lipschitzian functions”. MATH-NM-9-1995, Technische Universität Dresden, Dresden, Germany, 1995.

    Google Scholar 

  24. Fukushima M., “Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems”. Math. Programming 58, pp. 99–110, 1992.

    Article  MathSciNet  Google Scholar 

  25. Fukushima M., “Merit functions for variational inequality and complementarity problems”. In this proceedings.

    Google Scholar 

  26. Fukushima M., and Qi L., “A globally and superlinearly convergent algorithm for nonsmooth convex minimization”. SIAM J. Optimization, forthcoming.

    Google Scholar 

  27. Gabriel S.A., and Pang J.-S., A trust region method for constrained nonsmooth equations, in: W.W. Hager, D.W. Hearn and P.M. Pardalos, eds., “Large Scale Optimization: State of the Art” Kluwer Academic Publishers, Boston, pp. 159–186, 1994.

    Google Scholar 

  28. Geiger C., and Kanzow C., “On the resolution of monotone complementarity problems”. Computational Optimization and Appl., forthcoming.

    Google Scholar 

  29. Gomes-Ruggiero M.A., Martínez J.M., and Santos S.A., “Solving nonsmooth equations by means of quasi-Newton methods with globalization”. In: D. Du, L. Qi and R.S. Womersley, eds, “Recent Advances in Nonsmooth Optimization”, World Scientific, New Jersey, pp. 121–140, 1995.

    Chapter  Google Scholar 

  30. Han S.P., Pang J.-S., and Rangaraj N., “Globally convergent Newton methods for nonsmooth equations”. Math. Oper. Res., 17, pp. 586–607, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  31. Han J., and Sun D., “Newton and quasi-Newton methods for normal maps with polyhedral sets”. Preprint, Institute of Applied Mathematics, Academia Sinica, China, 1994 (Revised November, 1995).

    Google Scholar 

  32. Han J., and Sun D., “Superlinear convergence of approximate Newton methods for LC 1 optimization problems without strict complementarity”. In: D. Du, L. Qi and R.S. Womersley, eds, “Recent Advances in Nonsmooth Optimization”, World Scientific, New Jersey, pp. 141–158, 1995.

    Chapter  Google Scholar 

  33. Harker P.T., and Pang J.-S., “Finite-dimensional variational inequality and nonlinear complementarity problem: A survey of theory, algorithms and applications”. Math. Programming 48, pp. 161–220, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  34. Harker P.T., and Xiao B., “Newton method for the nonlinear complementarity problem: A B-differentiable equation approach”. Math. Programming (Series B) 48, pp. 339–357, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  35. Hiriart-Urruty J.B., Strodiot J.J., and Nguyen V.H., “Generalized Hessian matrix and second-order optimality conditions for problems with C1,1 data”. Appl. Math. and Optimization 11, pp. 43–56, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  36. Hiriart-Urruty J., and Lemaréchal C., “Convex Analysis and Minimization Algorithms”. Springer-Verlag, Bonn, 1993.

    Google Scholar 

  37. Ip C.M., and Kyparisis J., “Local convergence of quasi-Newton methods for B-differentiable equations”. Math. Programming 56, pp. 71–89, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  38. Jiang H., and Qi L., “A globally and superlinearly convergent trust region algorithm for convex SC1 minimization problems and its application to stochastic programs”. J. Optimization Theory and Appl., forthcoming.

    Google Scholar 

  39. Jiang H., and Qi L., “A new nonsmooth equation approach to nonlinear complementarity problems”. Technical Report AMR 94/30, School of Mathematics, The University of New South Wales, Australia, 1994 (Revised July, 1995).

    Google Scholar 

  40. Josephy N.H., “Newton’s method for generalized equations”. Technical Report 1965, Mathematics Research Center, University of Wisconsin, Madison, 1979.

    Google Scholar 

  41. Josephy N.H., “Quasi-Newton methods for generalized equations”. Technical Report 1966, Mathematics Research Center, University of Wisconsin, Madison, 1979.

    Google Scholar 

  42. Kanzow C., “Some equation-based methods for the nonlinear complementarity problem”. Optimization Methods and Software 3, pp. 327–340, 1994.

    Article  Google Scholar 

  43. Kojima M., and Shindo S., “Extensions of Newton and quasi-Newton methods to systems of PC 1 equations”. J. Oper. Res. Soc. Japan, 29, pp. 352–374, 1986.

    MathSciNet  MATH  Google Scholar 

  44. Kummer B., “Newton’s method for non-differentiable functions”. In: J. Guddat, B. Bank, H. Hollatz, P. Kall, D. Klatte, B. Kummer, K. Lommatzsch, L. Tammer, M. Vlach and K. Zimmerman, eds., “Advances in Mathematical Optimization”, Akademi-Verlag, Berlin, pp. 114–125, 1988.

    Google Scholar 

  45. Kummer B., “Newton’s method based on generalized derivatives for nonsmooth functions: Convergence analysis”. In: W. Oettli and D. Pallaschke, eds., “Advances in Optimization”, Springer-Verlag, Berlin, pp. 171–194, 1992.

    Google Scholar 

  46. Lemaréchal C., and Sagastizábal C., “An approach to variable metric methods”. In: “Proceedings of the 16th IFIP Conference on System Modelling and Optimization”, Springer-Verlag, Berlin, 1994.

    Google Scholar 

  47. Lemaréchal C., and Sagastizábal C., “Practical aspects of the Moreau-Yosida regularization: theoretical preliminaries”. SIAM J. Optimization, forthcoming.

    Google Scholar 

  48. Mangasarian O.L., “Unconstrained Lagrangians in nonlinear programming”. SIAM J. Control 13, pp. 772–791, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  49. Mangasarian O.L., “Unconstrained methods in nonlinear programming” In: “Nonlinear Programming”, SIAM-AMS Proceedings, Volume IX, American Math. Soc., Providence, Rhode Island, pp. 169-184, 1976.

    Google Scholar 

  50. Martínez J.M., and Qi L., “Inexact Newton methods for solving nonsmooth equations”. J. Computational and Appl. Math. 60, 1995.

    Google Scholar 

  51. Martínez J.M., and Zambaldi M.C., “Least change update methods for nonlinear systems with nondifferentiable terms”. Numerical Functional Analysis and Optimization 14, pp. 405–415, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  52. Mifflin R., “Semismooth and semiconvex functions in constrained optimization”. SIAM J. Control and Optimization 15, pp. 957–972, 1977.

    Article  MathSciNet  Google Scholar 

  53. Mifflin R., “A quasi-second-order proximal bundle algorithm”. Preprint (Revised version), Department of Pure and Applied Mathematics, Washington State University, Pullman, WA, USA, 1995.

    Google Scholar 

  54. Mifflin R., Qi L., and Sun D., “Properties of the Moreau-Yosida regularization of a piecewise C2 convex function”. Manuscript, School of Mathematics, The University of New South Wales, Sydney, Australia, 1995.

    Google Scholar 

  55. Moreau J., “Proximité et dualité dans un espace hilbertien”. Bulletin de la Société Mathématique de France 93, pp. 273–299, 1965.

    MathSciNet  MATH  Google Scholar 

  56. Ortega J.M., and Rheinboldt W.C., “Iterative Solution of Nonlinear Equations in Several Variables”. Academic Press, New York, 1970.

    MATH  Google Scholar 

  57. Outrata J.V., and Zowe J., “A Newton method for a class of quasi-variational inequalities”. Computational Optimization and Appl. 4, pp. 5–21, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  58. Pang J.-S., “Newton’s method for B-differentiable equations”. Math. Oper. Res. 15, pp. 311–341, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  59. Pang J.-S., “A B-differentiable equation based, globally, and locally quadratically convergent algorithm for nonlinear programs, complementarity and variational inequality problems”. Math. Programming 51, pp. 101–131, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  60. Pang J.-S., “Complementarity problems”. In: R. Horst and P. Pardalos, eds., “Handbook of Global Optimization”, Kluwer Academic Publishers, Boston, pp. 271–338, 1994.

    Google Scholar 

  61. Pang J.-S., and Chan D., “Iterative methods for variational and complementarity problems”. Math. Programming 24, pp. 284–313, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  62. Pang J.-S., and Gabriel S.A., “NE/SQP: A robust algorithm for the nonlinear complementarity problem”. Math. Programming 60, pp. 295–337, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  63. Pang J.-S., and Qi L., “Nonsmooth equations: Motivation and algorithms”. SIAM J. Optimization 3, pp. 443–465, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  64. Pang J.-S., and Qi L., “A globally convergent Newton method for convex SC 1 minimization problems”. J. Optimization Theory Appl. 85, pp. 633–648, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  65. Polak R., Mayne D.Q., and Wardi Y., “On the extension of constrained optimization algorithms from differentiable to nondifferentiable problems”. SIAM J. Control and Optimization 21, pp. 179–203, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  66. Qi L., “Convergence analysis of some algorithms for solving nonsmooth equations”. Math. Oper. Res. 18, pp. 227–244, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  67. Qi L., “Superlinear convergent approximate Newton methods for LC 1 optimization problems”. Math. Programming 64, pp. 277–294, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  68. Qi L., “Trust region algorithms for solving nonsmooth equations”. SIAM J. Optimization 5, pp. 219–230, 1995.

    Article  MATH  Google Scholar 

  69. Qi L., “Second-order analysis of the Moreau-Yosida approximation of a convex function”. AMR 94/20, Applied Mathematics Report, University of New South Wales, 1994 (Revised August, 1995).

    Google Scholar 

  70. Qi L., and Chen X., “A globally convergent successive approximation method for severely nonsmooth equations”. SIAM J. Control and Optimization 33, pp. 402–418, 1993.

    Article  MathSciNet  Google Scholar 

  71. Qi L., and Chen X., “A superlinearly convergent proximal Newton method for nondifferentiable convex optimization”. AMR 95/20, Applied Mathematics Report, University of New South Wales, Sydney, 1995.

    Google Scholar 

  72. Qi L., and Jiang H., “Semismooth Karush-Kuhn-Tucker equations and convergence analysis of Newton methods and quasi-Newton methods for solving these equations”. AMR 94/5, Applied Mathematics Report, University of New South Wales, 1994 (Revised August, 1995).

    Google Scholar 

  73. Qi L., and Sun J., “A nonsmooth version of Newton’s method”. Math. Programming 58, pp. 353–367, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  74. Qi L., and Womersley R.S., “An SQP algorithm for extended linear-quadratic problems in stochastic programming”. Annals Oper. Res. 56, pp. 251–285, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  75. Qian M., “The variable metric proximal point algorithm: Global and superlinear convergence”. Manuscript, Dept. of Mathematics, University of Washington, Seattle, WA, 1992.

    Google Scholar 

  76. Ralph D., “Global convergence of damped Newton’s method for nonsmooth equations, via the path search”. Math. Oper. Res. 19, pp. 352–389, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  77. Robinson S.M., “Generalized equations and their solutions, part II: Applications to nonlinear programming”. Math. Programming Study 19, pp. 200–221, 1982.

    Article  MATH  Google Scholar 

  78. Robinson S.M., “Generalized equations”. In: A. Bachern, M. Grötschel and B. Korte, eds., “Mathematical Programming: The State of the Art”, Springer-Verlag, Berlin, pp. 346–347, 1983.

    Chapter  Google Scholar 

  79. Robinson S.M., “An implicit-function theorem for a class of nonsmooth equations”. Math. Oper. Res. 16, pp. 292–309, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  80. Robinson S.M., “Newton’s method for a class of nonsmooth functions”. Set-Valued Analysis 2, pp. 291–305, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  81. Rockafellar R.T., “Convex Analysis”. Princeton University Press, Princeton, 1970.

    MATH  Google Scholar 

  82. Rockafellar R.T., “Monotone operators and the proximal point algorithm”. SIAM J. Control and Optimization 14, pp. 877–898, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  83. Rockafellar R.T., “Augmented Lagrangians and applications of the proximal point algorithm in convex programming”. Math. Oper. Res. 1, pp. 97–116, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  84. Rockafellar R.T., “Nonsmooth optimization”. In: J.R. Birge and K.G. Murty, eds., “Mathematical Programming: State of the Art”, The University of Michigan, Ann Arbor, pp. 248-258, 1994.

    Google Scholar 

  85. Shapiro A., “On concepts of directional differentiability”. J. Optimization Theory and Appl. 66, pp. 477–487, 1990.

    Article  MATH  Google Scholar 

  86. Sun D., and Han J., “Newton and quasi-Newton methods for a class of nonsmooth equations and related problems”. SIAM J. Optimization, forthcoming.

    Google Scholar 

  87. Sun D., and Han J., “On a conjecture in Moreau-Yosida regularization of a nonsmooth convex function”. Bulletin of Science in China (in Chinese), forthcoming.

    Google Scholar 

  88. Taji K., and Fukushima M., “A globally convergent Newton method for solving variational inequality problems with inequality constraints”. In: D. Du, L. Qi and R.S. Womersley, eds., “Recent Advances in Nonsmooth Optimization”, World Scientific, New Jersey, pp. 405-417, 1995.

    Google Scholar 

  89. Taji K., Fukushima M., and Ibaraki T., “A globally convergent Newton method for solving strongly monotone variational inequalities”. Math. Programming 58, pp. 369–383, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  90. Tseng P., “Growth behaviour of a class of merit functions for the nonlinear complementarity problem”. J. Optimization Theory and Appl., forthcoming.

    Google Scholar 

  91. Uko L.U., “Remarks on the generalized Newton method”. Math. Programming 59, pp. 405–412, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  92. Xiao B., and Harker P.T., “A nonsmooth Newton method for variational inequalities”. I: Theory, Math. Programming 65, pp. 151–194, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  93. Xiao B., and Harker P.T., “A nonsmooth Newton method for variational inequalities”. II: Numerical results, Math. Programming 65, pp. 195–216, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  94. Yamashita N., and Fukushima M., “Modified Newton methods for solving semismooth reformulations of monotone complementarity problems”. Technical Report, Graduate School of Information Science, Nara Institute of Science and Technology, Nara, Japan, 1995.

    Google Scholar 

  95. Yosida K., “Functional Analysis”. Springer Verlag, Berlin, 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Houyuan, J., Liqun, Q., Xiaojun, C., Defeng, S. (1996). Semismoothness and Superlinear Convergence in Nonsmooth Optimization and Nonsmooth Equations. In: Di Pillo, G., Giannessi, F. (eds) Nonlinear Optimization and Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0289-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0289-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0291-7

  • Online ISBN: 978-1-4899-0289-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics