Skip to main content

Charge Sensitivity Analysis as Diagnostic Tool for Predicting Trends in Chemical Reactivity

  • Chapter
Density Functional Theory

Part of the book series: NATO ASI Series ((NSSB,volume 337))

Abstract

The recent progress in density functional theory (DFT) [1–3] besides producing new attractive schemes for the electronic structure computation has also provided a framework for formulating novel concepts to describe the behaviour of molecular systems [3–6]. In chemistry this conceptual development has had a distinctly unifying character. Namely, some of the originally intuitive but remarkably successful tools of chemistry, such as the global electronegativity [4, 5] and hardness [6, 7], which have long been part of the chemical vocabulary, have been shown to be fundamental and well defined [4, 6]. The DFT rationalization of these quantities has also led to a theoretical validation of some old ideas of chemistry, viz., the electronegativity equalization (EE) [8], the Hard and Soft Acids and Bases (HSAB) rule, and the maximum hardness principle [9]. The DFT of the electronegativity and other related derivative properties of atoms and ions has been developed [3, 9–15] and the crucial for chemistry problem of the origin of molecular binding has been approached from the DFT viewpoint [3, 6, 11, 16–19].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Hohenberg and W. Kohn, Phys. Rev. 136, B 864 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  2. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  3. W. Kohn and L.J. Sham, Density Functional Methods in Physics, edited by R.M. Dreizler and J. da Providencia (Plenum, New York, 1975).

    Google Scholar 

  4. W. Kohn and L.J. Sham, Theory of the Inhomogeneous Electron Gas, edited by S. Lundqvist and N.H. March (Plenum, New York,1983).

    Google Scholar 

  5. R.M. Dreizler and E.K.U. Gross, Density Functional Theory: An Approach to the Quantum Many-Body Problem (Springer-Verlag, Berlin, 1990), Vol. 21; Advances in Quantum Chemistry (Academic, New York, 1990).

    Book  MATH  Google Scholar 

  6. R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford, New York, 1989), and rerefernces therein.

    Google Scholar 

  7. R.G. Parr, R. A. Donnelly, M. Levy, and W.E. Palke, J. Chem. Phys. 68, 3801 (1978).

    Article  ADS  Google Scholar 

  8. Electronegativity, edited by K.D. Sen and C.K. Jørgensen, Structure and Bonding Vol. 66 (Springer-Verlag, Berlin, 1987), and references therein.

    Google Scholar 

  9. R.G. Parr and R.G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983).

    Article  Google Scholar 

  10. Chemical Hardness, edited by K.D. Sen, Structure and Bonding Vol. 80 (Springer-Verlag, Berlin, 1993), and references therein.

    Google Scholar 

  11. R.T. Sanderson, Science 114, 670 (1951).

    Article  ADS  Google Scholar 

  12. R.G. Pearson, in Ref. 7, p. 1; P.K. Chattaraj and R.G. Parr, ibid. p. 11, and references therein.

    Google Scholar 

  13. L.J. Bartolotti, in Ref. 5, p. 25.

    Google Scholar 

  14. J.A. Alonso and L.C. Balbás, ibid. p. 41.

    Google Scholar 

  15. K.D. Sen, M.C. Böhm, and P.C. Schmidt, ibid. p. 99; K. Sen, in Ref. 7, p.87. 13. N.H. March, ibid. p. 71.

    Google Scholar 

  16. R.F. Nalewajski, Acta Phys. Polon. A 77, 817 (1990).

    Google Scholar 

  17. R.F. Nalewajski, J. Phys. Chem. 89, 2831 (1985).

    Article  Google Scholar 

  18. R.F. Nalewajski and M. Koninski, J. Phys. Chem. 88, 6234 (1984).

    Article  Google Scholar 

  19. R.F. Nalewajski, J.Am. Chem. Soc. 106, 944 (1984).

    Article  Google Scholar 

  20. R.F. Nalewajski and M. Koninski, Acta Phys. Polon. A 74, 255 (1988).

    Google Scholar 

  21. R.F. Nalewajski, Z. Naturforsch. 43a, 65 (1987); in Proceedings of the International Symposium on the Dynamics of Systems with Chemical Reactions, edited by J. Popielawski (World. Scientific, Singapore, 1989), p. 325.

    Google Scholar 

  22. S.K. Ghosh and R.G. Parr, Theoret. Chim. Acta, 72, 379 (1987).

    Article  Google Scholar 

  23. J.L. Gázquez, in Ref. 7, p.27., and references therein.

    Google Scholar 

  24. R.F. Nalewajski, ibid. p. 115, and references therein.

    Google Scholar 

  25. B.G. Baekelandt, W.J. Mortier, and R.A. Schoonheydt, ibid. p. 187, and references therein.

    Google Scholar 

  26. R.F. Nalewajski and J. Korchowiec, J. Mol. Catal. 68, 123 (1991).

    Article  Google Scholar 

  27. R.F. Nalewajski, A.M. Köster, T. Bredow, and K. Jug, J. Mol. Catal. 82, 407 (1993).

    Article  Google Scholar 

  28. R.F. Nalewajski, J. Korchowiec, R. Tokarz, E. Broclawik, and M. Witko, J. Mol. Catal. 77, 165 (1992).

    Article  Google Scholar 

  29. R.F. Nalewajski and J. Korchowiec, J. Mol. Catal. 82, 383 (1993).

    Article  Google Scholar 

  30. C. Lee, W. Yang, and R.G. Parr, J. Mol. Struct. (Theochem) 163, 305 (1988).

    Article  Google Scholar 

  31. R.F. Nalewajski, J. Korchowiec, and Z. Zhou, Int. J. Quantum Chem. Symp. 22, 349 (1988).

    Article  Google Scholar 

  32. R.F. Nalewajski, Int. J. Quantum Chem. 40, 265 (1991).

    Article  Google Scholar 

  33. R.F. Nalewajski, Int. J. Quantum Chem. 43, 443 (1992).

    Article  Google Scholar 

  34. Z. Zhou and R.G. Parr, J. Am. Chem. Soc. 112, 5720 (1990).

    Article  Google Scholar 

  35. R.F. Nalewajski and J. Korchowiec, Acta Phys. Polon A, 76, 747 (1989).

    Google Scholar 

  36. R.F. Nalewajski and J. Korchowiec, J. Mol. Catal. 54, 324 (1989).

    Article  Google Scholar 

  37. J. Korchowiec and R.F. Nalewajski, Int. J. Quantum Chem. 44, 1027 (1992).

    Article  Google Scholar 

  38. A. Tachibana and R.G. Parr, Int. J. Quantum Chem. 41, 527 (1992).

    Article  Google Scholar 

  39. R.F. Nalewajski, Int. J. Quantum Chem. 42, 243 (1992).

    Article  Google Scholar 

  40. ibid, (to be published); the mode resolved ISM presented in this work includes incorrect form of the matrix defining the orientation of the reactant atomic vector spaces.

    Google Scholar 

  41. R.F. Nalewajski, J. Korchowiec, and A. Michalak, Proceedings (Chemical Science), edited by S. Gadre (to bepublished).

    Google Scholar 

  42. B.G. Baekelandt, G.O.A. Janssens, H. Toufar, W.J. Mortier, and R.F. Nalewajski (unpublished).

    Google Scholar 

  43. R.F. Nalewajski, J. Mol. Catal. 82, 371 (1993).

    Article  Google Scholar 

  44. J.L. Gázquez, A.M. Vela, and M. Galván, in Ref. 5, p. 79.

    Google Scholar 

  45. J.A. Alonso and L.C. Balbás, in Ref. 7, p. 229.

    Google Scholar 

  46. D. Bergmann and J. Hinze, in Ref. 5, p. 145.

    Google Scholar 

  47. R.F. Nalewajski and J. Mrozek, Int. J. Quantum Chem. 43, 353 (1992).

    Article  Google Scholar 

  48. R.F. Nalewajski, Int. J. Quantum Chem. 44, 67 (1992).

    Article  Google Scholar 

  49. R.F. Nalewajski, Int. J. Quantum Chem. Symp. 26, 253 (1992).

    Article  Google Scholar 

  50. J. Hinze, M.A. Whitehead, and H.H. Jaffé, J. Am. Chem. Soc. 85, 148 (1963).

    Article  Google Scholar 

  51. J. Mullay, in Ref. 5, p. 1, and references therein.

    Google Scholar 

  52. R.F. Nalewajski, J. Phys. Chem. 93, 2658 (1989).

    Article  Google Scholar 

  53. J.C. Decius, J. Chem. Phys. 38, 241 (1963).

    Article  ADS  Google Scholar 

  54. L.H. Jones and R.R. Ryan, J. Chem. Phys. 52, 2003 (1970).

    Article  ADS  Google Scholar 

  55. B.I. Swanson, J. Am. Chem. Soc. 98, 3067 (1976).

    Article  Google Scholar 

  56. B.I. Swanson and S.K. Satija, J. Am. Chem. Soc. 99, 987 (1977).

    Article  Google Scholar 

  57. M. Streszewski and R.F. Nalewajski, Int. J. Quantum Chem. 38, 853 (1990).

    Article  Google Scholar 

  58. K. Ohno, Theoret. Chim. Acta 10, 111 (1968).

    Article  Google Scholar 

  59. K. Ohno, Adv. Quantum Chem. 3, 239 (1967).

    Article  ADS  Google Scholar 

  60. V. Guttman, The Donor-Acceptor Approach to Molecular Interactions (Plenum, New York, 1978).

    Book  Google Scholar 

  61. H.B. Callen, Thermodynamics (Wiley, New York, 1960).

    MATH  Google Scholar 

  62. M. Polanyi, Atomic Reactions (Williams and Norgate, London, 1932).

    Google Scholar 

  63. L.L. Magee, J. Chem. Phys. 8, 687 (1940).

    Article  ADS  Google Scholar 

  64. see also: R.D. Levine and R.B. Bernstein, Molecular Reaction Dynamics (Clerendon, Oxford, 1974), p. 86.

    Google Scholar 

  65. J.P. Perdew, R.G. Parr, M. Levy, and J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982).

    Article  ADS  Google Scholar 

  66. G.S. Hammond, J. Am. Chem. Soc. 77, 334 (1955).

    Article  Google Scholar 

  67. J.C. Polanyi, J. Chem. Phys. 31, 1338 (1959).

    Article  ADS  Google Scholar 

  68. M.H. Mok and J.C. Polanyi, J. Chem. Phys. 51, 1451 (1969).

    Article  ADS  Google Scholar 

  69. R.A. Marcus, J. Chem. Phys. 72, 891 (1968).

    Article  Google Scholar 

  70. N. Agmon and R.D. Levine, Chem. Phys. Lett. 52, 197 (1977).

    Article  ADS  Google Scholar 

  71. R.A. Marcus, J. Chem. Phys. 24, 266 (1956).

    Google Scholar 

  72. V.G. Levich, R. Dagonadze, A. Kuznetsov, Electrochim. Acta 13, 1025 (1968).

    Article  Google Scholar 

  73. A.J.C. Varandas and S.J. Formosinho, J. Chem. Soc. Faraday Trans. 2, 82, 953 (1986).

    Article  Google Scholar 

  74. T.H. Dunning, J. Phys. Chem. 88, 2469 (1984).

    Article  Google Scholar 

  75. G.C. Lynch, R. Steckler, D.W. Schwenke, A.J.C. Varandas, D.G. Truhlar, and B.C. Garrett, J. Chem. Phys. 94, 7136 (1991).

    Article  ADS  Google Scholar 

  76. M. Dupuis, D. Spangler, and J.J. Wendoloski, National Resource for Computations in Chemistry Sotfware Catalog: Program QGO (University of California, Berkeley, 1980).

    Google Scholar 

  77. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, J.H. Jensen, S. Koseki, M.S. Gordon, K.A. Nguyen, T.L. Windus, and S.T. Elbert, QCPE Bulletin, 10, 52 (1990); see also: General Atomic and Molecular Electronic Structure System GAMESS: User’s Guide [North Dakota State University (Fargo) and Iowa State University (Ames)].

    Google Scholar 

  78. R.L. Kurtz, R. Stockbauer, T.E. Madey, E. Roman, and J.L. de Segovia, Surf. Sci. 218, 178 (1989), and references therein.

    Article  ADS  Google Scholar 

  79. W.J. Lo, Y.W. Chung, and G.A. Somorjai, Surf. Sci. 71, 199 (1978).

    Article  Google Scholar 

  80. D.N. Nanda and K. Jug, Theoret. Chim. Acta, 57, 95 (1980).

    Article  Google Scholar 

  81. K. Jug, R. Iffert, and J. Schulz. Int. J. Quantum Chem. 32, 265 (1987).

    Article  Google Scholar 

  82. J. Li and K. Jug, J. Comput. Chem. 13, 85 (1992).

    Article  Google Scholar 

  83. M. Witko, R. Tokarz, and J. Haber, J. Mol. Catal. 66, 205, 357 (1991).

    Google Scholar 

  84. M. Witko, J. Haber, and R. Tokarz, J. Mol. Catal. 82, 457 (1993).

    Article  Google Scholar 

  85. A. Golebiewski, R.F. Nalewajski, and M. Witko, Acta Phys. Polon. A 51, 617 (1977).

    Google Scholar 

  86. A. Golebiewski and M. Witko, Acta Phys. Polon. A 51, 629 (1977).

    Google Scholar 

  87. A. Golebiewski and M. Witko, Acta Phys. Polon. A 57, 585 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nalewajski, R.F. (1995). Charge Sensitivity Analysis as Diagnostic Tool for Predicting Trends in Chemical Reactivity. In: Gross, E.K.U., Dreizler, R.M. (eds) Density Functional Theory. NATO ASI Series, vol 337. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9975-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9975-0_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9977-4

  • Online ISBN: 978-1-4757-9975-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics