Skip to main content

Abstract

Friedel oscillations1 are spatial modulations of the electron density n(r) which occur in microscopic zero-temperature calculations of metallic properties, whenever the metal is subject to a local disturbance. Static Friedel oscillations take the form of a standing-wavelike perturbation in the electron density, falling off with distance from the disturbance. These oscillations are most clearly derived in the jellium model in which the positive metal ions are represented by a uniform positive background. This suppresses periodic crystalline density oscillations and leaves the Friedel oscillations plainly visible. One example is provided by the electron density profile n(z) in calculations2 of the jellium metal surface (Fig. 1): here the surface itself constitutes the “disturbance”, and the wavenumber of the oscillations is twice the Fermi momentum in the bulk metal, 2kF. The oscillations die as z−2 where −z is the depth into the metal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Friedel, Phil. Mag. 43, 153 (1952).

    MATH  Google Scholar 

  2. N.D. Lang and W. Kohn, Phys. Rev. B 1, 4555 (1970).

    Article  ADS  Google Scholar 

  3. N.D. Lang, Adv. Sol. State Phys. 28, 225 (1973).

    ADS  Google Scholar 

  4. W.A. Harrison, “Solid State Theory”, McGraw Hill, New York 1970, p. 299.

    Google Scholar 

  5. E. Bruno & B. L. Gyorffy PRL 71, 181 (1993).

    Article  ADS  Google Scholar 

  6. L.M. Roth, H.J. Zeigler and T.A. Kaplan, Phys. Rev. 149, 519 (1966)

    Article  ADS  Google Scholar 

  7. W. Kohn, Phys. Rev. Lett. 2, 393 (1959).

    Article  ADS  Google Scholar 

  8. J.M. Ziman, “Principles of the Theory of Solids”, Cambridge University Press, Cambridge, 1972.

    Google Scholar 

  9. W.R. Bennet, W. Schwarzacher and W.F. Egelhoff, Phys. Rev. Lett. 65, 3169 (1990).

    Article  ADS  Google Scholar 

  10. J. Unguris, RJ. Celotta and D. T. Pierce, Phys. Rev. Lett. 67, 140 (1991).

    Article  ADS  Google Scholar 

  11. P. Bruno and C. Chappert, Phys. Rev. Lett. 67, 1602 (1991): Phys. Rev. B 46, 261 (1992).

    Article  ADS  Google Scholar 

  12. V. Grolier, D. Renard, B. Bartenlian, P. Beauvillain, C. Chappert, C. Dupas, J. Ferr é, M. Galtier, E. Kolb, M. Mulloy, J.P. Renard and P. Veillet, Phys. Rev. Lett 71, 3023 (1993).

    Article  ADS  Google Scholar 

  13. N.E. Bickers, DJ. Scalapino and R.T. Scalettar, Internat. J. Mod. Phys. B 1, 687 (1987).

    Article  ADS  Google Scholar 

  14. N.E. Bickers, DJ. Scalapino and S.R. White, Phys. Rev. Lett. 62, 961 (1989).

    Article  ADS  Google Scholar 

  15. F.K. Schulte, Surf. Sci. 55, 427 (1976).

    Article  ADS  Google Scholar 

  16. J.F. Dobson, Phys. Rev. B 46, 10163 (1992).

    Article  ADS  Google Scholar 

  17. W. Kohn and L.J. Sham, Phys. Rev. 137, A1697 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  18. K.-D. Tsuei, E.W. Plummer and PJ. Feibelman, Phys. Rev. Lett. 63, 2256 (1989).

    Article  ADS  Google Scholar 

  19. K.-D. Tsuei, E.W. Plummer, A. Liebsch, K. Kempa and P. Bakshi, Phys. Rev. Lett. 64, 44 (1990).

    Article  ADS  Google Scholar 

  20. P.R. Pinsukanjana, E.G. Gwinn, J.F. Dobson, E.L. Yuh, N.G. Asmar, M. Sundaram, and A.C. Gossard, Phys. Rev. B 46, 7284 (1992).

    Article  ADS  Google Scholar 

  21. W. Kohn and LJ. Sham, Phys. Rev. 140, A1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  22. A.L. Fetter and J.D. Walecka, “Quantum Theory of Many-Particle Systems”, McGraw-Hill, New York 1971.

    Google Scholar 

  23. T. Ando, Z. Phys. B 26, 263 (1977).

    Article  ADS  Google Scholar 

  24. A. Zangwill and P. Soven, Phys. Rev. A 21, 1561 (1980).

    Article  ADS  Google Scholar 

  25. E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984).

    Article  ADS  Google Scholar 

  26. E.K.U. Gross and W. Kohn, Phys. Rev. Lett. 55, 2850 (1985): erratum ibid., 57, 923 (1986).

    Article  ADS  Google Scholar 

  27. N. Iwamoto and E.K.U. Gross, Phys. Rev. B 35, 3003 (1987).

    Article  ADS  Google Scholar 

  28. J.F. Dobson and G. H. Harris, J. Phys. C: Solid St. Phys. 21, L729 (1988).

    Article  ADS  Google Scholar 

  29. B.NJ. Persson, J. Phys. C: Solid St. Phys. 13, 435 (1980).

    Article  ADS  Google Scholar 

  30. PJ. Feibelman, Prog. Surf. Sci. 12, 287 (1982).

    Article  ADS  Google Scholar 

  31. PJ. Feibelman, Phys. Rev. B 9, 5077 (1974): Phys. Rev. B 12, 1319 (1975).

    Article  ADS  Google Scholar 

  32. J.F. Dobson and G.H. Harris, J. Phys. C: Solid St. Phys 19, 3971 (1986).

    Article  ADS  Google Scholar 

  33. K. Kempa and W.L. Schaich, Phys. Rev. B 34, 547 (1986).

    Article  ADS  Google Scholar 

  34. K. Kempa and W.L. Schaich, Phys. Rev. B 37, 6711 (1988).

    Article  ADS  Google Scholar 

  35. K. Kempa, A. Liebsch and W.L. Schaich, Phys. Rev. B 38, 12645 (1988).

    Article  ADS  Google Scholar 

  36. A. Liebsch, Phys. Rev. B 36, 7378 (1987).

    Article  ADS  Google Scholar 

  37. K.J. Song, D. Heskett, H.L. Dai, A. Liebsch, and E.W. Plummer, Phys. Rev. Lett. 61, 1380 (1988).

    Article  ADS  Google Scholar 

  38. K. Burke and W.L. Schaich, Phys. Rev. B 48, 14599 (1993).

    Article  ADS  Google Scholar 

  39. W.L. Schaich, private communication (1993).

    Google Scholar 

  40. A. Liebsch, Phys. Rev. Lett. 67, 2858 (1991).

    Article  ADS  Google Scholar 

  41. G.H. Harris “Electronic properties of juxtaposed metal surfaces”, Ph.D. thesis, Griffith University, Nathan, Queensland Australia 1992.

    Google Scholar 

  42. A.G. Eguiluz, Phys. Rev. Lett. 51, 1907 (1983).

    Article  ADS  Google Scholar 

  43. R.S. Sorbello, Solid State Commun. 56, 821 (1985): ibid 48, 989 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dobson, J.F. (1995). Friedel Oscillations in Condensed Matter Calculations. In: Neilson, D., Das, M.P. (eds) Computational Approaches to Novel Condensed Matter Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9791-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9791-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9793-0

  • Online ISBN: 978-1-4757-9791-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics